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Perception involves two important stages of processing: the repre­
sentation of incoming sensory information, followed by the inter­
pretation of that representation. Two prominent hypotheses have 
separately guided our understanding of these two processing stages, 
but each has limitations when considered alone. The efficient coding 
hypothesis argues that neural resource limitations lead to efficient 
sensory representations that are optimized with regard to the specific 
stimulus statistics of the natural environment1,2. This hypothesis can 
explain several key features of neural coding in early sensory areas  
(for example, see refs. 3–5), but it does not specify how these cod­
ing characteristics can give rise to important aspects of perceptual 
behavior such as perceptual biases. In contrast, the Bayesian hypo­
thesis posits that perception is an act of unconscious inference that 
interprets the noisy sensory representation in the context of prior 
knowledge about the world6–8. This hypothesis provides a norma­
tive explanation for many aspects of perceptual and sensorimotor  
behavior (for example, see refs. 9–12), but it has been criticized for 
using somewhat arbitrary model specifications to explain psycho­
physical data13,14. We unified ideas of efficient coding and Bayesian 
inference into a new model of perceptual behavior. Specifically, we 
propose a Bayesian observer model that is constrained by assuming 
an efficient representation of the sensory input.

Two key components define a Bayesian observer: the prior dis­
tribution that reflects the observer’s belief about how frequently a 
certain stimulus value occurs, and the likelihood function that cap­
tures the encoding accuracy in the sensory representation of the 
observer. Previous studies have proposed independent constraints 
on either the prior belief based on natural15,16 or learned9,12 stimulus 
statistics, or the likelihood function based on natural stimulus uncer­
tainties17,18 or neural physiological tuning characteristics10, but not 
both. In contrast, our new model formulation jointly constrains the 

prior belief and the likelihood function by assuming that the sen­
sory representation and the interpretation of the sensory evidence 
are optimized with regard to the stimulus statistics of its sensory  
environment. In particular, we formulated the efficient coding prob­
lem at the level of Fisher information, which, together with an assump­
tion about the noise structure, allowed us to specify the likelihood  
function. Thus, we were able to precisely formulate a Bayesian observer 
model for any stimulus variable with known natural statistics.

We validated our framework by formulating observer models  
for two perceptual variables for which the natural statistics are 
known, visual orientation and spatial frequency. The models make 
a number of distinct and rather surprising predictions; for example, 
that percepts are frequently biased away from the peaks of the prior,  
a prediction that is seemingly anti-Bayesian19. We found that the 
predictions were well matched by data from several studies report­
ing measured biases in perceived visual orientation and spatial fre­
quency under different levels and sources of uncertainty. Our results  
demonstrate that, by integrating the ideas of efficient coding with 
Bayesian decoding, it is possible to formulate well-constrained 
observer models that can account for perceptual behavior that has 
not been explained before. A preliminary version of this work has 
been presented previously20.

RESULTS
We modeled perception as a probabilistic encoding-decoding proc­
ess10 (Fig. 1a). The presentation of a stimulus value θ elicits a noisy 
sensory measurement m (encoding), based on which the observer 
then generates an estimate ˆ( )q m  that represents the perceived stimulus 
value (decoding). We combined two general assumptions to define our 
observer model. First, we assumed that encoding is efficient, that is, 
the sensory representation is optimally adapted to the natural stimulus 
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A Bayesian observer model constrained by efficient 
coding can explain ‘anti-Bayesian’ percepts
Xue-Xin Wei1 & Alan A Stocker1,2

Bayesian observer models provide a principled account of the fact that our perception of the world rarely matches physical reality. 
The standard explanation is that our percepts are biased toward our prior beliefs. However, reported psychophysical data suggest 
that this view may be simplistic. We propose a new model formulation based on efficient coding that is fully specified for any given 
natural stimulus distribution. The model makes two new and seemingly anti-Bayesian predictions. First, it predicts that perception 
is often biased away from an observer’s prior beliefs. Second, it predicts that stimulus uncertainty differentially affects perceptual 
bias depending on whether the uncertainty is induced by internal or external noise. We found that both model predictions match 
reported perceptual biases in perceived visual orientation and spatial frequency, and were able to explain data that have not been 
explained before. The model is general and should prove applicable to other perceptual variables and tasks.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.4105
http://www.nature.com/natureneuroscience/


1510	 VOLUME 18 | NUMBER 10 | OCTOBER 2015  nature NEUROSCIENCE

a r t ic  l e s

distribution in the sense of maximizing mutual information between 
the stimulus and said representation. Second, we assumed that decod­
ing is Bayesian and is based on an accurate (generative) model of the 
sensory process, that is, the observer’s prior belief matches the true 
stimulus distribution and the likelihood function faithfully reflects 
the encoding characteristics. As a result, both the observer’s prior 
belief and likelihood function are jointly constrained by the stimu­
lus distribution (Fig. 1b). With the additional assumption about the 
observer’s loss function (an important component of the Bayesian 
decoder that states how costly perceptual errors are for the observer),  
we can make quantitative predictions for the percept of a stimulus 
variable for which the natural stimulus distribution is known.

Efficient coding and the likelihood function
We adopted a definition of efficient coding that assumes that sensory 
encoding maximizes the mutual information I[θ, m] between the sen­
sory measurement m and the stimulus variable θ with regard to the 
intrinsic uncertainty (internal noise) in the sensory representation21. 
This definition allowed us to establish a link between the probabil­
ity distribution of the stimulus p(θ) and Fisher information J(θ) of 
the sensory representation using a bound on mutual information22. 
Assuming the bound is tight and mutual information is limited,  
we found that 

p J( ) ( )q q∝

Fisher information is a measure of encoding accuracy and reflects 
the amount of coding resources that is dedicated to the representation 
of a certain stimulus value θ. Equation (1) provides an intuitive way of 
characterizing an efficient sensory representation: coding resources 
should be allocated according to the stimulus distribution, resulting 
in a more accurate representation of those stimulus values that occur 
more frequently. Note that in deriving equation (1) we relied on a 
formal constraint to limit the overall mutual information that may 
not be intuitive to interpret nor easy to validate in terms of neural data 
(equation (4), Online Methods). The derived relation between prior 

(1)(1)

distribution and Fisher information (equation (1)), however, is sup­
ported by the results of previous studies that have maximized mutual 
information directly with regard to neural tuning parameters22–24.

Although Fisher information constrains the likelihood function, 
it is not sufficient to fully specify its shape. An additional assump­
tion about the noise structure is required. Let us consider a function 
F(θ) that maps the stimulus space to a new space in which Fisher 
information is uniform (Fig. 1c). We refer to this space as the ‘sen­
sory space’ in reference to Gustav Fechner because discriminability, 
when measured in units of this space, is uniform25. The mapping 
F(θ) is defined as the cumulative of the stimulus distribution (equa­
tion (8), Online Methods). Uniform Fisher information implies 
that the noise and thus the likelihood function is homogeneous 
in this space. We make the additional assumption that the noise is 
such that the expected likelihood function (that is, averaged out 
over many trials) is symmetric around the stimulus value in the 
sensory space. Additive and symmetric noise is the simplest con­
dition for which this assumption is true (for example, Gaussian as 
illustrated in Fig. 1c). Although the assumption seems parsimoni­
ous given the homogeneity of the space, the degree to which it is a 
valid assumption for real neural populations is unclear. In simula­
tions of reasonably realistic neural population models, we found the  
assumption to approximately hold under a fairly large range of  
conditions (see Discussion).

With the likelihood defined in the sensory space, the likelihood 
function in the stimulus space can then be obtained by simply applying  
the inverse mapping F−1( )q . As a result, the likelihood functions 
when formulated in stimulus space are typically asymmetric, with a 
long tail away from the peak of the prior distribution.

Note that by formulating the efficient coding in terms of Fisher 
information we are able to specify the likelihood function without 
having to assume specific details about the tuning characteristics of 
the underlying neural representation. We deliberately chose such 
a formulation because it provided a more parsimonious, yet also 
more general, description of the Bayesian observer model. As we 
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Figure 1  Bayesian observer model constrained 
by efficient coding. (a) We model perception 
as an encoding-decoding process. We assume 
encoding is governed by efficient coding and is 
characterized by the corresponding conditional 
probability distribution p(m|θ) of the sensory 
measurement m given a stimulus value θ. We 
also assume that decoding is Bayesian based 
on an accurate generative model of the sensory 
process. The percept ˆ( )q m  is then specified 
based on the posterior distribution p(θ|m) and 
the loss function Lˆ ( ˆ, )q q qL . (b) Our assumptions 
imply that the Bayesian observer is constrained 
by the natural stimulus distribution: the prior 
belief is assumed to directly match the stimulus 
distribution (for example, through learning), 
although the likelihood function is constrained 
by the stimulus distribution via efficient 
coding. (c) Example for an arbitrary stimulus 
distribution. An efficient coding principle that 
maximizes mutual information implies that the 
encoding accuracy (measured as the square-
root of the Fisher information J(θ)) matches the 
stimulus distribution. With some assumptions 
about the sensory noise characteristics, the likelihood function is fully constrained by the Fisher information. Likelihood functions for different sensory 
measurements are shown to illustrate their heterogeneity across the stimulus space. Technically, the likelihood functions can be computed by assuming 
a symmetric noise structure (that is, symmetric likelihood functions) in a space in which the Fisher information is uniform (sensory space, characterized 
by the mapping F(θ)) and then transforming those symmetric likelihood functions back to the stimulus space.
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demonstrate below, neural populations with quite different tuning 
characteristics, but equivalent distributions of Fisher information, 
can represent equivalent efficient sensory representations that lead 
to similar Bayesian decoding characteristics.

General predictions of the framework
The tight link between the stimulus distribution, the encoding accu­
racy and the shape of the likelihood function has important conse­
quences for the resulting decoding characteristics of our Bayesian 
observer model. In particular, it makes two predictions with regard 
to perceptual bias that are surprising and counterintuitive from a 
standard Bayesian modeling point of view.

The first prediction is that perception can be biased away from 
the prior peak. A Bayesian modeling approach that assumes a priori 
a symmetric likelihood function predicts the percept to be biased  
toward the prior peak for relatively smooth prior distributions (Fig. 2a).  
The situation changes, however, if the likelihood function is asym­
metric (Fig. 2b). Now, the asymmetry itself can lead to estimation 
biases (also see ref. 26). In our framework, the shape of the likeli­
hood is asymmetric for any non-uniform stimulus distribution, with a 
heavier tail pointing away from the prior peak. This shape introduces 
a repulsive bias effect that we refer to as the likelihood repulsion. 
Although the effect depends on the chosen loss function, it is robust 
for commonly used choices (see below). The repulsive effect is further 
amplified when computing the expected bias over many measure­
ments of a given stimulus value θ0. The reason is that the distribution 
of these measurements in the stimulus space also follows the same 
asymmetry; that is, the noisy measurements and thus the position 
of the likelihood functions on each trial are, on average, also biased 
away from the true stimulus value θ0. These observations suggest a 
nuanced account of perceptual biases as the net result of two bias 
effects, one introduced by the likelihood asymmetry and one by the 
prior distribution. Because of the above link, we can precisely predict 
perceptual biases for known natural stimulus distributions. We found 
that, under many conditions, the model predicted that perception was 
biased away from the peak of the stimulus distribution (that is, the 
prior belief). In particular, assuming small internal noise only and a 
squared-error loss function we were able to derive analytic solutions 
for the expected perceptual bias for arbitrary stimulus distributions 
(see Online Methods for details). We found that the bias was always 

repulsive if the prior distribution is well approximated by a monotonic 
function over the support of the likelihood function. This prediction 
is quite notable, as the ‘bias towards the prior’ has been considered to 
be a fundamental characteristic of Bayesian observer models.

The second prediction is that stimulus (external) and sensory (internal)  
noise differently affect perceptual bias. The difference emerges because 
our efficient coding assumption generally imposes an inhomogeneous 
sensory representation that has a different metric than the physical 
space. Thus, although both sources of uncertainties are ultimately 
jointly reflected in the noise of the sensory measurement m, their 
individual effects on the likelihood function are different because of 
the mapping function F (Fig. 3a). Consequently, noise added at the 
stimulus level leads to a different likelihood function than the equiva­
lent noise added at the sensory level, which culminates in a differ­
ent bias. Increasing sensory noise gives rise to a likelihood function 
that is more asymmetric in the stimulus space because the additional 
uncertainty is mapped from the sensory space (where it is symmetric; 
for example, Gaussian) to the stimulus space via the inverse mapping 
F−1. Although the prior attraction increases as a result of the overall 
wider likelihood function, the increase in likelihood repulsion gener­
ally dominates, leading to a net increase in repulsive bias (Fig. 3b). 
Experimentally, we assume that sensory noise can be modulated by 
changing stimulus contrast or presentation time. In contrast, adding 
the same Gaussian noise at the stimulus level gives rise to an overall 
smoothed likelihood function that can be thought of as the result of 
convolving the original likelihood function with the Gaussian noise 
kernel. In this case, the asymmetry of the likelihood function does 
not change and the likelihood repulsion therefore remains constant. 
The prior attraction, however, becomes stronger because of the overall 
increase in likelihood width. Thus, the net bias is less repulsive and 
eventually becomes attractive for large noise magnitudes (Fig. 3c).  
The specific predictions, of course, depend on the shape of the  
stimulus noise. We focused on additive Gaussian noise because this 
choice allowed us to directly compare the predictions against data 
from psychophysical experiments that have used such noise. However, 
our observer model is not limited to any particular choice and it will 
be interesting to validate our model under asymmetric stimulus noise 
conditions27,28. Figure 3d summarizes the predicted noise dependen­
cies. For comparison, we also included the predictions of a Bayesian 
observer model that assumes a symmetric likelihood function. The 
predicted bias is always attractive and grows with increasing stimulus 
or sensory noise. Note that systematic predictions are not possible for 
very large noise magnitudes. At those noise levels, the resulting biases 
depend on the overall shape of the prior.

In summary, our Bayesian observer model predicts that perception 
is often biased away from the peak of the prior. Furthermore, it predicts  
that internal and external noise can differentially modulate these 
biases: increasing internal noise increases repulsive bias, whereas 
increasing stimulus noise decreases repulsive bias, eventually leading 

Prior attraction

Prior
Likelihood

Posterior

Posterior
mean

�
�0

Prior attraction Likelihood repulsion

Prior

Posterior

Likelihood

Repulsive bias

Posterior
mean

Likelihood
mean

�
�0

a bFigure 2  Prediction 1: Bayesian perception can be biased away from  
the prior peak. (a) A standard Bayesian observer model that a priori 
assumes a symmetric likelihood function typically predicts perceptual 
biases toward the peak of the prior. This bias towards the prior has been 
considered to be a fundamental characteristic of a Bayesian model.  
(b) In our new Bayesian observer model, efficient encoding promotes 
a nonlinear mapping between stimulus and sensory representation. 
Assuming that the sensory representation is affected by internal noise, 
the resulting likelihood function is asymmetric for any non-uniform prior 
distribution, with a long tail pointing away from the prior peak. As a 
result, the estimate can be biased away from the prior peak. Here, this 
is illustrated assuming a squared-error loss function. As a result of its 
asymmetry, the mean of the likelihood function is away from the peak 
of the prior relative to the true stimulus value θ0 (likelihood repulsion). 
Although the prior still leads to an attractive shift of the posterior  
(prior attraction), the net bias can be repulsive. Note that the degree  
of asymmetry of the likelihood function, and thus the magnitude  
of the repulsive bias, depends directly on the steepness of the prior.  
Both examples are illustrated for the case of the median likelihood 
function (that is, the measurement m equals the stimulus value θ0).  
The repulsive effect is further amplified because the distribution of  
the measurement also follows the same asymmetry.
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to attractive perceptual biases. These predictions are surprising and at 
odds with predictions of standard Bayesian observer models.

Model validation against human psychophysical data
We validated the model predictions against measured perceptual 
biases for two visual stimulus variables with known natural stimulus 
distributions, local orientation θ and spatial frequency ξ.

Orientation perception. Several studies have measured the distri­
bution of visual orientations in natural environments by carefully 

analyzing natural image data. The extracted distributions are fairly 
robust with regard to the specifics of the analysis (that is, amplitude 
spectrum29 versus dominant orientation16,30) and the image content 
(for example, indoor versus outdoor scenes29,30). These studies con­
sistently reported multimodal distributions with peaks at each of the 
two cardinal orientations. We used a parametric approximation of 
the measured distribution by Girshick and colleagues16 (Fig. 4a). 
Figure 4b,c shows the predicted mean biases as a function of stimulus 
orientation θ for different levels of sensory and stimulus noise. The 
predicted biases are typically repulsive and thus toward the nearest 

Figure 4  Biases in perceived orientation.  
(a) Measured distribution of local visual 
orientation in natural images (gray line, 
replotted from ref. 16), superimposed with the 
parametric description we used for  
the model predictions (black line: p(θ) =  
c0(2 − |sin θ|) where c0 is a normalization  
constant). (b) Predicted mean biases as a  
function of stimulus orientation θ and different 
levels of sensory noise; biases are generally 
repulsive, that is, away from the nearest 
cardinal orientation, with larger biases for  
larger noise magnitudes. (c) Predictions are 
presented as in b but for different levels of 
stimulus noise; here the repulsive biases are 
smaller for larger noise magnitudes, eventually 
becoming attractive for very large levels. 
Curves in b and c represent the expected bias 
values over the full measurement distributions. 
(d) Measured biases at 15 degrees oblique 
orientation15,32 (average over all four 
orientations indicated by dashed lines in a).  
The biases match the predicted behavior shown 
in Figure 3d well. (e) Measured biases as a function of sensory noise (±1 s.e.m.). Sensory noise was modulated by different stimulus presentation  
times (low to high: 1,000 ms, 160 ms, 80 ms, 40 ms). Data from ref. 32 were reanalyzed. (f) Measured biases for two levels of additive Gaussian  
stimulus noise (N = 5 subjects, mean ± 2 s.e.m.). Arrows indicate the mean bias over all orientations in each of two corresponding quadrants (for 
example, top dark blue arrow: mean bias for high stimulus noise computed over the range (0,45)ø(90,135) degrees). The overall biases were clearly 
repulsive and were reduced for larger stimulus noise. Data are replotted from ref. 15.
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Figure 3  Prediction 2: stimulus (external) and 
sensory (internal) noise differentially affect 
perceptual bias. (a) Stimulus noise directly 
affects stimulus uncertainty and thus the 
likelihood function (formulated in stimulus 
space). The uncertainty introduced by sensory 
noise, however, is transformed back through the 
inverse of the mapping function F (equation (8), 
Online Methods) between sensory and stimulus 
space; the very reason the likelihood function 
is asymmetric in the first place. (b) Increasing 
the (symmetric) noise at the level of the sensory 
representation leads to a more asymmetric 
likelihood function (formulated in the stimulus 
space) and thus increases likelihood repulsion 
(dashed lines). As a result, the increase in 
prior attraction resulting from the increase in 
likelihood width is smaller than the increase 
in likelihood repulsion, leading to an overall net increase in repulsive bias. (c) In contrast, adding (symmetric) stimulus noise does not affect the 
asymmetry of the likelihood function (dashed lines) because the added noise essentially convolves the likelihood function with the noise kernel.  
The likelihood repulsion remains the same while the prior attraction grows because the overall width of the likelihood increases. As a result, the 
perceptual bias becomes more attractive. (d) Summary plot illustrating how perceptual biases depend on stimulus and sensory noise. We assumed 
additive Gaussian noise and a squared-error loss function. Dots correspond to the conditions shown in b. In general, the perceptual bias is repulsive  
and grows with increasing sensory noise. However, increasing stimulus noise reduces the repulsive bias, eventually leading to attractive biases for  
large noise levels. Note that this differential dependency on the different noise sources is a direct consequence of the inhomogeneous sensory 
representation imposed by efficient coding. For comparison, the black curve illustrates the expected biases for a Bayesian observer model that  
a priori assumes a symmetric likelihood function.
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oblique orientation. Biases are zero for the cardinal and oblique orien­
tations, yet reach their maximum for orientations that lie in between. 
These oblique biases have been reported as early as in the late 19th 
century31. The shape of the bias curves as a function of stimulus ori­
entation is similar for both noise types. However, we predict that the 
bias amplitude grows with increasing sensory noise (Fig. 4b) and 
it decreases for increasing stimulus noise (Fig. 4c). Psychophysical 
data from two recent studies match those predictions15,32. Figure 
4d–f show the measured perceptual bias for stimulus orientations at 
15 degrees oblique as well as for the entire range of orientations as a 
function of stimulus and sensory noise.

Note that Bayesian observer models for the perception of visual ori­
entation have been proposed before15,16. These models were validated 

against psychophysical measurements of relative bias between two 
stimuli with different levels of stimulus (external) noise. Specifically, 
both studies used the type of array stimuli shown in Figure 5a and 
measured the difference in perceived orientation between a stimu­
lus with a high versus low stimulus noise. Although the percept of 
each of the two stimuli is biased toward the oblique orientations, 
it is less repulsive for the high-noise stimulus (Fig. 4f). Thus, the 
relative bias is indeed attractive and therefore can be accounted for 
by these models (Fig. 5b). However, such standard models cannot 
explain the repulsive biases and their differential noise dependencies 
(Fig. 4), nor can they account for the relative bias between a stimulus 
with high versus low sensory noise (Fig. 5c). This relative bias is 
again repulsive because high sensory noise leads to larger repulsive 
biases (Fig. 4e). Thus, we predict that if Girshick and colleagues had 
fit their Bayesian model16 to data collected with stimuli of different 
sensory rather than different stimulus noise (Fig. 5d), their fit prior  
distribution would not have matched the natural stimulus distribu­
tion (Fig. 4a) and would have shown peaks at the oblique orientations 
instead. Our results suggest that the notion that perceived orientation 
is biased toward the cardinal axes because of a prior belief that favors 
cardinal orientations is simplistic.

Spatial frequency perception. Natural visual scenes are dominated by 
low spatial frequency content. Specifically, the empirically computed 

Figure 5  Relative biases in perceived 
orientation. Relative bias is the difference  
in perceived orientation between a high-noise 
and a low-noise stimulus (reference).  
(a) Two orientation stimuli with different  
levels of stimulus noise. Each stimulus consists 
of an array of Gabor elements, and the width  
of the distribution from which the orientations 
of the elements were sampled controls the  
noise level. (b) Measured relative biases as  
a function of stimulus orientation using the  
stimuli shown in a; data are replotted from  
ref. 15 (blue; N = 5 subjects, mean ± 2 s.e.m.) 
and ref. 16 (green; N = 5 subjects, mean and  
95% quantile). The relative bias is attractive  
because the repulsive bias is smaller for the  
high-noise stimulus (see Fig. 4f). (c) Two  
orientation stimuli associated with different 
levels of sensory noise. Sensory noise can be  
modulated by stimulus contrast (this example) 
or presentation time32 with lower contrast/
shorter presentation time corresponding to higher sensory noise. (d) Measured relative bias (±1 s.e.m.) between the percepts of two stimuli with 
different sensory noise as a function of stimulus orientation32. Relative bias is repulsive because the repulsive bias is larger for larger sensory noise. 
Unlike previous models15,16, the new model accounts for both relative bias patterns.
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spectrum of spatial frequency in natural images approximately follows 
a power-law function of the form p(ξ) ∝ 1/ξα, with reported values for 
α around 1 (refs. 33,34). We assumed the spectrum to be a good proxy 
for the prior distribution over spatial frequency (we set α = 1). (b) The 
predicted biases as a function of spatial frequency for different levels 
of sensory (internal) noise. (c) Predicted biases for different levels of 
stimulus (external) noise. (d) Biases in perceived spatial frequency 
measured for different levels of sensory noise (N = 3; mean). Data are 
replotted from ref. 36. The experiments used different levels of stimulus 
contrast (1, 2, 4, 8, 16 and 32%) to modulate sensory noise. Stimuli 
consisted of a Gabor patch with different spatial frequency. The predicted 
biases for stimulus noise in c have not been validated yet. Note that, at 
very low and very high spatial frequencies, the amplitude spectrum is no 
longer well described by a single power-law function33. As a result,  
our predictions here are limited to the intermediate frequency range.
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amplitude spectra of natural images robustly follow the power-law 
function p(ξ) ∝ 1/ξα over a relatively large frequency range with values  
for α around 1 (refs. 33,34). Given that the human visual system 
can simultaneously sense a broad range of spatial frequencies at any 
given spatial location (spatial frequency channels35), we assumed 
that the empirically measured amplitude spectrum of natural images 
is a good proxy of the total distribution of spatial frequencies ξ an 
observer is exposed to in natural visual environments (Fig. 6a). We 
chose α = 1 for simplicity, but verified that our results were robust 
with regard to other values in the reported range. Because p(ξ) is 
monotonically decreasing, we predict that, in the absence of stimulus 
noise, perceived spatial frequency is biased toward higher frequen­
cies across the entire frequency range. We also predict that increas­
ing sensory noise (by for example, reducing stimulus contrast) biases 
the percept toward even higher frequency values (Fig. 6b), whereas 
increasing stimulus noise leads to a decrease in repulsive bias that 
eventually can turn into an attractive bias at low frequencies (Fig. 6c).  
Our predictions are consistent with psychophysically measured biases 
in perceived spatial frequency as a function of stimulus contrast36 
(Fig. 6d). Biases for different levels of stimulus noise have not been 

reported yet, but could probably be measured using synthesized 
stimuli with different spectral bandwidths28.

Specifying the loss function
The proposed Bayesian observer model is fully specified for known 
natural stimulus distributions, with the exception of the loss function.  
The loss function is an integral part of any optimal Bayesian observer 
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Figure 8  Equivalent efficient neural representations for the same  
stimulus distribution. (a) A circular stimulus variable θ with stimulus  
distribution p(θ). Three different neural populations that efficiently  
encode θ according to equation (1) are shown. (b) The tuning curves  
of the first population were constrained to be wide and identical.  
Efficient coding promotes a distribution of the neurons such that  
the flanks of the individual tuning curves most overlap at the peaks  
of the prior distribution. The neural density (green dots) is such that  
it is lowest at the prior peaks. (c) The tuning curves and the neural  
density of a second population were allowed to vary24,40. As a result,  
the density followed the prior distribution49 (blue dots) and tuning  
curves were narrowest at the prior peaks. (d) The tuning curve shapes as well as the neural density (gray dots) of the third population were constrained 
to be identical/homogeneous. Only the gain was allowed to vary. As a result, neurons at the peak of the prior had highest gain. (e–g) Population 
likelihoods for all three populations (averaged over 400 presentations of the same stimulus value θ0, assuming independent Poisson spike count 
variability) were similar (up to a scale factor) and showed the predicted asymmetry with the heavy tail pointing away from the nearest peak of the prior. 
(h–j) As a result, Bayesian decoding with prior p(θ) of all three populations resulted in similar repulsive biases. Biases were computed over 10,000 
samples of the neural population response.
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Figure 7  Predicted biases for different loss functions. (a) Predicted biases 
in perceived orientation for the observer model with L0 norm (posterior 
mode, black), L1 norm (posterior median, blue) or L2 norm (posterior 
mean, green) loss function. Both the L1 and L2 norm predict repulsive 
biases, whereas the L0 norm always leads to attractive biases. Sensory 
noise is fixed and identical for all three models. (b) Adding stimulus 
noise reduces the likelihood asymmetry and thus increases the attractive 
influence of the prior. The influence of the likelihood asymmetry is weaker 
with the L1 loss than the L2 loss, explaining the transition to an attractive 
bias curve. (c,d) A similar pattern is predicted for the perceptual biases in 
spatial frequency.
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model, specifying how costly some perceptual errors are for the 
observer. The assumption is that the observer chooses an estimate 
(percept) that minimizes the expected loss (Online Methods). 
Unfortunately, it is difficult to determine the actual loss function 
of human observers when performing low-level perceptual tasks. 
Our predictions thus far assume a squared-error loss function  
(or L2 norm), which is equivalent to computing the posterior mean. 
To explore the degree to which the model predictions depend on the 
specific choice of the loss function, we compared them to predic­
tions based on two other commonly used loss functions from the Lp 
family: the L0 loss (equivalent to the posterior mode) and the L1 loss 
(equivalent to the posterior median).

Overall, the predictions for the L1 and L2 loss are qualitatively 
similar although the bias magnitudes are smaller for the L1 loss  
(Fig. 7a,c). This is expected, as the median of the posterior is less 
repulsed than the mean. The effect translates to the case of added 
stimulus noise (Fig. 7b,d). Predictions for the L0 loss, however, are 
distinctly different in that the bias is attractive in these examples. The 
L0 loss is unique in the sense that it does not take into account the 
shape of the posterior distribution. This intuitively explains why the 
predicted bias is attractive: the repulsive influence of the likelihood 
asymmetry is masked by the unique shape of the L0 loss function, 
and thus prior attraction dominates. Any symmetric loss function 
that employs the full information contained in the posterior distri­
bution, however, preserves the repulsive influence of the likelihood 
asymmetry on the percept. Thus, the qualitative predictions of our 
observer model are fairly robust with regard to the specific choice of 
the loss function. The comparison also suggests that humans’ percep­
tion of low-level stimuli is unlikely guided by a L0 loss function, which  
supports previous findings12,37.

DISCUSSION
We have investigated the idea that the natural stimulus statistics not 
only determine how sensory information is represented, but also 
how this representation is interpreted to form a percept. Specifically, 
we introduced a new Bayesian observer model that is constrained 
by efficient coding. As a result, the likelihood function and prior 
belief of our model are linked and jointly constrained by the natural 
stimulus statistics. The observer model makes two surprising and, at 
first sight, counterintuitive general predictions. It predicts that per­
ceptual biases are repulsive, that is, away from the peak of the prior 
distribution, under many conditions. It also predicts that sensory 
(internal) and stimulus (external) noise differentially affect perceptual 
bias when the stimulus distributions are non-uniform. We confirmed 
these predictions using reported perceptual biases for visual orienta­
tion and spatial frequency, two perceptual variables for which the 
natural stimulus distributions are known. The model accounts for 
biases measured over a wide range of noise and experimental con­
ditions. In particular, the model provides a theoretical explanation  
for repulsive biases that previously proposed Bayesian observer  
models have failed to account for.

Our formulation of the Bayesian observer model is based on certain 
assumptions. For example, we considered a particular efficient coding 
scheme (maximizing mutual information), although other formula­
tions are also possible, such as minimizing redundancy2 or recon­
struction error38, or formulations that take into account the coding 
requirements of downstream (motor) representations and actions39. 
Some evidence suggests that maximizing mutual information may 
not be the optimal encoding strategy for a decoder that minimizes 
mean squared-error38,40. In general, the choice of the encoding cri­
terion depends on many constraints, not least on the task for which 

the encoded sensory information is used41. However, for low-level 
stimulus variables (such as local visual orientation and spatial  
frequency) that are likely to represent the sensory information for 
many different perceptual tasks (including the estimation tasks stud­
ied here, but also fine/coarse discrimination or categorization tasks), 
optimizing for a more generic information criterion may represent 
a good encoding strategy of the visual system2,42. As we show, the 
chosen formulation is well supported by the data, yet other choices of 
the efficient coding scheme and the loss function may not lead to the 
same predictions (see Fig. 7). Modeling more cognitive stimulus vari­
ables or tasks may require a modification of our model formulation.

Similarly, although we only considered scalar stimulus vari­
ables, there is behavioral evidence that the brain can rapidly 
learn to efficiently encode also more complex stimulus variables 
(for example, sound frequency spectra43). Efficient coding solu­
tions for these more complex variables, however, may also dif­
fer from the solution presented here. Because different efficient 
coding schemes impose different constraints on the shape of the  
likelihood, this may lead to different predictions for perceptual 
biases in all these cases. Such avenues would be interesting to explore  
in the future, although potential model predictions might be difficult 
to validate experimentally.

Although not explicitly specified, we implicitly assumed a (quasi-) 
stationary perceptual environment, and thus stationary stimulus dis­
tributions. This assumption is probably valid for low-level stimulus 
variables (such as for example, spatial frequency or visual orientation), 
yet is likely violated in experiments that require subjects to rapidly 
learn a particular stimulus distribution12,44, or during instances of 
perceptual adaptation. We previously proposed that the characteristic 
repulsive adaptation aftereffects can be explained by asymmetric like­
lihood functions that result from an efficient re-distribution of sen­
sory resources according to changes in the recent stimulus history26.  
Our proposed observer model uses a more mathematically rigid for­
mulation and, in addition, imposes a tight link between prior belief, 
likelihood function and stimulus distribution. It will be interesting 
to determine the degree to which our proposed observer model can 
account for adaptation aftereffects when formulated for stimulus  
distributions over shorter timescales.

Our model formulation does not specify how the sensory measure­
ment was extracted from low-level sensory signals, such as generating 
a measurement of local visual orientation based on the high-dimen­
sional retinal image signal. Understanding this feature extraction 
process is important for characterizing what form of uncertainty and 
ambiguity is induced at the stimulus level under natural conditions17.  
We focused on simple stimulus noise models that are sufficient to 
capture the typical noise characteristics of the artificial stimulus dis­
plays used in psychophysical experiments (Fig. 4). However, there is 
no principled reason why the framework could not be extended to 
incorporate more complex uncertainty structures.

It is worth considering the implications for a potential physiological 
instantiation of the proposed perceptual encoding-decoding process.  
We purposefully used a formulation of efficient coding that is not 
based on detailed assumptions about the tuning characteristics of 
the underlying neural representation of the sensory information.  
It has the advantage of being sufficiently specific to define the likeli­
hood function and to therefore permit clear predictions of perceptual 
behavior, yet is general in that it is not tied to any particular neural 
implementation (in contrast with our initial formulation20). Consider, 
for example, a stimulus variable θ (with distribution shown in Fig. 8a) 
that is encoded in three different neural populations. Each population 
consists of the same number of independent Poisson neurons, but has 
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quite different tuning characteristics in terms of neural density, tuning 
curve shape and response gain (Fig. 8b–d). However, all three popu­
lations constitute equivalent efficient representations according to 
our definition because each population’s Fisher information satisfies 
equation (1). As we would expect, the average likelihood functions 
computed for each population’s response are similar (assuming that 
the gain is sufficiently large such that our assumption about noise 
symmetry is met) and show the predicted asymmetries (Fig. 8e–g). 
As a result, Bayesian decoding of each of the three neural population 
leads to similar, repulsive bias curves (Fig. 8h–j). We believe that 
physiological constraints determine the specific neural coding solu­
tion. For example, wiring constraints could limit the amount by which 
tuning curve widths can vary in a population, which would favor the 
solutions shown in Figure 8b,d over the solution shown in Figure 8c  
for a highly non-uniform stimulus distribution. Notably, this may 
explain the observed differences in tuning characteristics between 
neurons in area V1 encoding orientation and neurons in area MSTd 
encoding heading direction, respectively. Perceptually, both stimu­
lus variables exhibit similar repulsive biases away from the cardinal  
orientations15,32, respectively, from heading directions straight ahead 
or backwards45,46. The measured neural tuning characteristics,  
however, are quite different. Although the orientation tuning density 
and widths of neurons in V1 are loosely in agreement with the popula­
tion shown in Figure 8c24,47, neurons in area MSTd rather resemble 
the population shown in Figure 8b, with the majority of neurons 
preferentially tuned to left- and rightward directions48. Our findings 
suggest that both the V1 and the MSTd population efficiently repre­
sent a stimulus variable with similar natural distributions, leading 
to similar perceptual biases, yet may be subject to additional con­
straints at the level of implementation. However, we currently do not 
have a good estimate of the natural stimulus distribution for heading  
direction, which would allow us to confirm this conjecture.

Several neural implementations of Bayesian inference have been 
proposed, which use decoding mechanisms that are similar to the 
population vector read-out40,49,50. The implementations all rely on 
neural populations whose tuning densities match the prior distribu­
tion. Note that the population shown in Figure 8c has these tuning 
characteristics and could be readily decoded with such a popula­
tion vector read-out, thereby providing a neural implementation  
of our observer model. Whether other, equivalent efficient encod­
ing solutions (see for example, Fig. 8b,d) also allow for simple and  
physiologically plausible decoding mechanisms is an interesting ques­
tion for the future.

An obvious question is how our proposed Bayesian observer model 
and its predictions are consistent with the results of previous stud­
ies that showed the characteristic ‘biases toward the prior’ behavior. 
First, it is important to note that the new observer model does not 
exclusively predict repulsive biases. For example, as stimulus noise 
gets large, biases can become attractive (Fig. 4c). The same applies 
when considering stimuli that are in a range where the prior is not 
monotonic over the support of the likelihood (for example, stimuli 
near the peak of a uni-modal prior distribution). In addition, meas­
ured percepts depend on the specifics of the experimental setup, and 
thus what looks like an attractive bias might be, for example, a relative 
difference between repulsive biases (Fig. 5). Finally, some previous 
results may have relied on incorrect assumptions about the stimulus 
distribution, again with the result that biases that appear to be attrac­
tive may actually be repulsive. The formulation of our new Bayesian 
observer model is general and we think it will allow us to explain 
perceptual biases far beyond the examples presented here, including 
biases that currently cannot be explained. The problem we see for 

such future investigations is to obtain good estimates of the relevant 
stimulus distributions, which is often difficult (for example, distribu­
tions of visual speed34). But even if this information is not available 
or too difficult to obtain, the proposed observer model is better con­
strained, allowing improved fits to psychophysical data with fewer free  
parameters compared with previous Bayesian modeling approaches.

Last but not least, our work addresses the common criticism that 
Bayesian observer models are not well constrained and thus can 
explain essentially any data with the appropriate post hoc choice of 
prior belief and likelihood function13,14. We have shared this concern 
to some degree, as we have expressed in the past10. However, we think 
we have addressed this criticism in a constructive way by introducing 
a better constrained Bayesian observer model that, at the same time, 
also can explain perceptual data that were previously unaccounted 
for. We think that Bayesian models with arbitrarily chosen parametric 
descriptions have served their purpose, providing an intuitive under­
standing of how prior beliefs may affect perception. Although the 
focus on prior beliefs was important, our results demonstrate that it 
can lead to a rather simplistic understanding of the Bayesian modeling 
approach, which also fails to capture various interesting aspects of 
perceptual behavior (such as the repulsive biases). Our new observer 
model is a next step in elaborating the Bayesian hypothesis, putting 
the focus on a more principled definition of the likelihood function 
and the way different noise sources affect perceptual processing.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Efficient encoding. We assumed an efficient coding constraint that maximizes 
the mutual information between a scalar stimulus variable θ and its sensory 
representation m (refs. 2,21). Fisher information J(θ) defined as 

J p m p m dm( ) ln ( | ) ( | )q q
q

q= ∂
∂





∫
2

can be used to specify a bound on mutual information in the asymptotic limit 
of vanishing noise22. Assuming the bound is tight, mutual information can be 
expressed as23 

I m S
e

KL p J
S

[ , ] ln ( ) || ( )q
p

q q=






−






1
2 2

2

where S J d= ∫ ( )q q
q

. S can be intuitively understood as the total amount of  
coding resource available. KL(||) represents the Kullback-Leibler (KL)  
divergence51, which is always non-negative.

The goal is to choose J(θ) to maximize I[θ, m] for a fixed p(θ). Technically, this 
requires us to impose an additional constraint because I[θ, m] is not limited other­
wise. To bound I[θ, m] and create a well-posed optimization problem, we assume 

S J d C= ≤∫ ( )q q
q

With this constraint, maximizing mutual information requires the above KL 
divergence term to be zero. This is equivalent to 

p J( ) ( )q q∝

Because the mutual information I[θ, m] is invariant with respect to any re-
parameterization of θ, it is desirable that the constraint also shares this property. 
The chosen constraint (equation (4)) is invariant whereas constraints using other 
power functions of J(θ), for example, ∫θJ(θ)dθ, are not.

Bayesian decoding. Bayesian decoding consists of defining an estimate q̂( )m  of 
the stimulus value given measurement m such that the expected loss according 
to a loss function ̂ ( ˆ( ), )q q qL m  is minimal, that is, 

ˆ arg min ( | ) ( ˆ( ), )ˆq q q q qq p m L m d∫
The key quantity here is p(θ|m), which represents the posterior probability 

distribution over θ for a given sensory measurement m. According to Bayes’ 
rule52, the posterior can be computed as p(θ|m) ∝ p(θ)p(m|θ), where p(θ) is the 
prior belief and p(m|θ) represents the likelihood function on θ. For the specific 
L0, L1 and L2 loss functions considered in this paper, the optimal estimator q̂( )m  
is the posterior mode, median, and mean, respectively.

Perceptual bias for L2 loss (sensory noise only). We can analytically derive the 
expected bias b(θ) of our Bayesian observer model in the case of a squared error 
loss function (L2 loss) assuming no stimulus noise. The posterior mean can be 
computed in terms of the likelihood function and the prior belief as following 

ˆ
( | ) ( )

( | ) ( )
( )q

q q q q

q q qL m
p m p d

p m p d2
= ∫

∫

With the efficient coding assumption above, equation (5), we can now express 
the bias as a function of the prior belief. First, we define a one-to-one mapping 
F(θ) that transforms the stimulus space to a sensory space with units q q= F( )  for 
which the Fisher information (as well as the stimulus distribution) is uniform25,42. 
The mapping is defined as 

F p d( ) ( )q c c
q

=
−∞∫  

which is the cumulative of the prior distribution p(θ).

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

(7)(7)

(8)(8)

We then re-write the estimate equation (7) by replacing θ with the inverse of 
the mapping, that is, q q= −F 1( ) . Given a sensory measurement m, we can write 
the estimator as 

ˆ ( )
( ) ( | ( )) ( ( )) ( )

( | ( )
q

q q q q

q
L m

F p m F p F dF

p m F2

1 1 1 1

1
=

− − − −

−
∫

∫

   

 )) ( ( )) ( )

( ) ( | ( ))

( | ( ))p F dF

F p m F d

p m F d− −

− −

−= ∫
∫1 1

1 1

1 

  

q q

q q q

q q  

with 

K m p m F
p m F d

( , ) ( | ( ))
( | ( ))




 
q q

q q
=

−

−∫
1

1

we can further simplify the notation and get 

ˆ ( ) ( ) ( , )q q q qL m F K m d
2

1= −∫   

In order to get the expected value of the estimate 〈 〉q̂L2
 for a particular stimu­

lus value θ0, we marginalize equation (11) over the measurement space M for 
θ0, thus 

〈 〉 =

=

∫∫
∫ ∫

−

−

ˆ ( | ) ( ) ( , )

( ) ( | ) (

q q q q q

q q

qL M

M

p m F K m dmd

F p m K

2 0 0
1

1
0

  

 mm dmd

F d

, )

( ) ( ) ,

 

  

q q

q q qq= −∫ 1
0

L  

where we define 

Lq q q q0 0( ) ( | ) ( , ) = ∫ p m K m dm
M

Therefore, Lq q0 ( )  is the expected normalized likelihood function expressed in 
the sensory space given a particular stimulus value θ0. We assume that Lq q0 ( )  is 
symmetric around the true stimulus value q0  in this space. Thus, with equation 
(11) we then can compute the expected bias at θ0 as 

b F d F( ) ( ) ( ) ( )q q q q qq0
1 1

00= −− −∫    L

Assuming the prior density to be smooth, we expand F−1 in the neighborhood 
( , ) q q0 0− +h h , which covers the support of the likelihood function. Using a 
first-order Taylor expansion with mean-value form of the remainder, we get 

F F F F x
− − − −= + ′ − + ′′ −1 1

0
1

0 0
1

0
21

2
( ) ) ( ) ( ) ( ) ( )(       q q q q q q q q

with qx  guaranteed to exist in between q0  and q . By re-writing equation (14) in 
terms of this expansion, we find that 

b F d

p F

h

h
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In general, there is no simple rule to judge the sign of b(θ0), because θx 

varies with θ and the sign of 1
2p x( )q







′
 thus may change. However, if the 

prior is monotonic on the interval F h h− − +1
0 0( , ))( q q  then the sign 

of 1
2p x( )q







′

 is always the same as the sign of 1

0
2p( )q







′
, and therefore, the sign 

(9)(9)

(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)
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of b(θ0) is the same as the sign of 1

0
2p( )q







′

. This means that the bias and the 

local slope of the prior have opposite signs. It implies that the bias is repulsive, 
that is, away from the peak of the prior.

Additionally, in the small noise regime where the likelihood is sufficiently 
narrow, the prior can always be approximated as being monotonic over 

the support of the likelihood function. Due to the continuity of 1
2p( )q






′
, we 

can approximate 1
2p x( )q







′
 by 1

0
2p( )q







′  and thus write the bias as 

b C
p

( )
( )

q
q0
0
2

1≈






′

 

where C is a positive constant.
The key assumption we made in the above derivation is that the average  

likelihood function Lq q0 ( )  in the sensory space ( q ) is symmetric. The dimen­
sionality of the measurement m is not important, that is, m can be a scalar or 
a vector (for example, response vector of a neural population), as long as the 
assumption that Lq q0 ( )  is symmetric is approximately true.

Perceptual bias under more general conditions. Under more general conditions 
that include stimulus noise and/or different loss functions, the expected percep­
tual bias can no longer be computed analytically. However, numerical solutions 
can be computed for general conditions according to the encoding-decoding 
cascade description of the proposed Bayesian observer model. In particular, we 
can distinguish the effect of stimulus versus sensory noise (Figs. 4 and 6) by 
modeling the sensory measurement m as 

m F s n= + +( )q d d  

where δs represents the stimulus noise (expressed in stimulus space) and δn the 
sensory noise (expressed in sensory space). We assume the sensory noise to be 
Gaussian (respectively, vonMises) distributed, and the stimulus noise to follow 
the actual noise distributions used in the psychophysical experiments we modeled 
(often Gaussian/vonMises distributed as well). The transformation F that imposes 
the Efficient coding constraint determines how the stimulus noise is mapped to 
the sensory space (equation (8)). For any stimulus value θ0 the conditional prob­
ability p(m|θ0) can be computed according to equation (18) and the specific noise 
distributions. For each m, we can numerically compute the Bayesian estimator  
 q̂( )m  according to a specific loss function (L0, L1, L2) using equation (6). Finally, 
for any given stimulus value θ0, the expected bias b(θ0) can be computed by mar­
ginalizing the estimate q̂( )m  over the measurement distribution p(m|θ0) and then 
subtracting the true value θ0, thus 

ˆ ( ) ˆ( ) ( | )q q q q qb m p m dm0 0 0= −∫

Neural simulation. We applied a little trick in order to generate three neural 
populations that have different tuning characteristics yet match in their Fisher 
information J(θ) (up to a scaling factor) and satisfy the efficiency constraint 
equation (5). We first generated the population in Figure 8b by assuming that 

(17)(17)

(18)(18)

(19)(19)

it consists of N = 20 neurons with wide and uniform tuning curves (von Mises 
distribution) whose preferred tuning follow an arbitrary density distribution  
d(θ) ∝ 1.2−|cos θ|. We then computed the population Fisher information assum­
ing independent Poisson noise, and with equation (5) derived the stimulus  
distribution (i.e., the prior belief) p(θ) (Fig. 8a). The tuning curves of the second 
population (Fig. 8c) were obtained by re-parameterizing a set of homogeneous 
tuning curves through the cumulative prior F(θ) as previously proposed24,40.  
To create the third neural population in (Fig. 8d), we started from a homogene­
ous set of tuning curves with relatively narrow tuning widths and adjusted the 
gain of individual neurons such that the square-root of the population Fisher 
information matched the prior distribution. Numerically, this is done via a non-
negative least-squares fit. These procedures guaranteed that all three populations 
have identical Fisher information (up to a scale factor) and thus are efficient 
representations of the prior distribution. The likelihoods shown in Figure 8e–g 
represent the average likelihoods computed over 400 samples of the population 
responses for a fixed stimulus value θ0. The biases (Fig. 8h–j) are computed by 
drawing 10,000 samples assuming independent Poisson-spiking neuron models, 
and calculating the average bias of the Bayes’ least-squares estimator over the 
samples while exploiting the symmetry in the stimulus distribution.

Data re-analysis. The bias curves shown in Figure 4e were obtained by re-analyzing  
the data set presented by DeGardelle and colleagues32. In their experiments, 
stimulus orientation was randomly sampled over the entire range (i.e., [0, 180] 
degrees). Bias was computed by averaging the trials over a sliding window  
(3 degrees size). The resulting bias b(θ) was then further smoothed with a boxcar 
filter with width w = 45 degrees. We performed this analysis for four stimulus con­
ditions corresponding to stimulus presentation times of 40, 80, 160, and 1,000 ms.  
For these conditions, the shape and amplitudes of the bias curves were robust 
with regard to the chosen bin size and the width of the smoothing kernel. A fifth 
stimulus condition corresponding to a presentation time of 20 ms was excluded 
in our analysis because the amplitude of the bias curve was dependent on the 
bin size, making it impossible to reliably determine the magnitude of the bias. 
The error bars for individual orientations θ0 in Figure 4e represent the circular 
standard error, which was estimated based on the data samples within the window 
[θ0 ± 22.5] degrees. Relative bias shown in Figure 5d was calculated by taking the 
difference between the biases corresponding to the 160 ms and 1,000 ms stimu­
lus presentation conditions reported in Figure 4e. The error bar in Figure 5d  
was calculated as the square root of the sum of the squared s.e.m. in Figure 4e 
(160-ms and 1,000-ms conditions).

The bias curves shown in Figures 4f, 5b and 6d were obtained by extracting the 
data points from the original document files15,16,36 using a dedicated software tool 
(GraphClick, http://www.arizona-software.ch/). Note that the biases in Figure 6d 
were originally reported as relative change (percentage increase). We transformed 
these relative values into absolute values with units of cycles per degree.

Code availability. The simulation results shown in Figures 4–8 were generated 
by code written in R (free statistical software package, Free Software Foundation). 
The scripts are freely available on request.

A Supplementary Methods Checklist is available.
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