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1 Value function for a Network and Myerson-Shapley

value

We follow de Fontenay and Gans (2014) in adopting the specification of the value function for

a network introduced in Navarro (2006). Let N denote the set of players and let N u denote

an undirected graph. Let C (N u) the set of components of N u. Players in a component

are linked directly or indirectly to each other but not to any other players, thus C (N u) is

a partition of N . The Myerson-Shapley value for the network N u is characterized by the

properties of fair allocation and component balance. Let Ψi (N u) denote the Myerson-Shapley

value of player i. Fair allocation is a recursive property which requires that

Ψi (N u)−Ψi (N u − ij) = Ψj (N u)−Ψj (N u − ij) . (1)

for every link ij ∈ N u and every graph N u, that is, both players involved in a link lose the

same amount if this link is severed.

Component balance requires that∑
i∈h

Ψi (N u) = v (h,N u) (2)

for all components h ∈ C (N u) and graphs N u. Here v is the value function that assigns

a value to each component of a graph, for all graphs. Notice that the value assigned to a

component is allowed to depend on the entire graph.

2 Star Graph

2.1 Extensive Form

In this section we consider the Rolodex game proposed by Brügemann, Menzio, and Gautier

(2017, BMG) in the setting of intra firm bargaining. In this setting a firm bargains sequen-

tially with multiple workers. The value function associated with this game has a special

structure as the firm is assumed to be essential in production. BGM find that in this setting

the Rolodex game yields the Shapley value for each player. Here we allow for a general value

function while maintaining the same extensive form. In particular, there is central player

that bargains sequentially with multiple peripheral players.

We start by introducing some notation. We use c as the index of the central player. We

describe the extensive form in a recursive way. Let o ∈ {c, p} denote the type of player that

makes the next offer, where c stands for central and p for peripheral. At a given point in the

game there is a list of remaining linksN . For consistency with the notation used for the game
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with a general graph in Section 3, we write this as a list of directed links from the peripheral

player to the central player, in the order in which the central player will negotiate with these

players when negotiations start from scratch with this graph. For example, if players 2 and

3 are the remaining peripheral players, we have N = {21, 31}. There is a second list K of

directed links, which is the subset of links from N which have not yet reached an agreement,

in the order in which the central player will negotiate with the peripheral players. Finally

there is also a set of agreements A. Each agreement is a pair consisting of the index of the

peripheral player involved in the agreement and the transfer the central player has agreed

to make to this peripheral player. The state of the game is described by (o,N ,K,A).

The game ends when K is empty, that is, when all peripheral players that remain con-

nected to the central player have reached an agreement. Let h denote the component of N
containing the central player. The payoff of the central player is

v(h,N u)−
∑

(i,Ti)∈A

Ti

where N u denotes the graph of undirected links corresponding to the list N . A peripheral

player i ∈ h receives the payoff Ti for which (i, Ti) ∈ A. A peripheral player i 6∈ h has

become disconnected from c and forms his own component, receiving v(i,N u).

If K is non-empty, then the game continues. The next link to negotiate is K1. Let K1p

denote the peripheral player involved in this link. If o = p, then K1p makes an offer T to c. If c

accepts, then the link K1 is removed from the list without agreements, the agreement (K1p, T )

is added to A, and the game continues in state [p,N ,K −K1,A+ (K1p, T )]. If c rejects, then

with probability q#K there is a breakdown. Notice that the breakdown probability is allowed

to depend on the number of links without agreement, for reasons to be discussed further

below. If there is no breakdown, then the game continues in state (c,N ,K,A). If there is

a breakdown, then the link K1 is deleted from N and all agreements in A are deleted. The

new order of negotiation is given by N after the deletion of K1. Thus the game continues in

state (N −K1,N −K1, ∅).
If o = c, then c makes an offer T to K1p. If K1p accepts, then the game continues in state

[p,N ,K −K1,A+ (K1p, T )]. If K1p rejects, then with probability q#K there is breakdown.

If there is no breakdown, then link K1 rotates to the end of the list. Let KR denote the

resulting new list. The game then continues in state
(
p,N ,KR,A

)
. If there is a breakdown,

the game continues in state (N −K1,N −K1, ∅).
We are interested in the limit as breakdown probabilities approach zero. The role of

breakdown is to act as a force towards agreement that ensures uniqueness of no-delay SPE.

This force is only needed in situations in which a single link remains without agreement,
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since otherwise the prospect for a link to rotate to the end of the list already acts as such a

force. Thus without loss of generality we set qk = 0 for k > 1. Furthermore, notice that for

situations with #K = 1 the extensive form coincides with that of the Binmore-Rubinstein-

Wolinsky bilateral alternating offers game with risk of breakdown, which is known to have a

unique SPE if the breakdown probability is strictly positive. For simplicity, here we directly

focus on the limiting payoffs as the breakdown probability approaches zero.

2.2 No-delay SPE

Let N (Ku) denote the set of players involved in a link in Ku, including c unless Ku is empty.

We start by specifying a function that is useful in characterizing equilibrium payoffs. The

arguments of this function are the undirected graphs N u and Ku and the set of agreements

A. For all i ∈ N (Ku), recursively define Φ̃i (N u,Ku, s) via the surplus splitting property

Φ̃c (N u,Ku,A)− Φ̃c (N u − ic,N u − ic, ∅) = Φ̃i (N u,Ku,A)− v (i,N u − ic) (3)

for all i ∈ N (Ku)− c, and the adding-up property∑
i∈N(Ku)

Φ̃i (N u,Ku,A) = v (N (Ku) ,N u)−
∑

(j,Tj)∈A

Tj. (4)

It follows immediately that

Φ̃i(N u,N u, ∅) = Ψi(N u)

since equations (3) and (4) coincide with the properties of fair allocation in equation (1) and

component balance in equation (2) for this case, respectively.

We will show that no-delay SPE payoffs in state (o,N ,K,A) are unique and given by

Φi (o,N ,K,A) = Φ̃i (N u,Ku,A) . (5)

Thus the order of peripheral players and the type of the offering player does not affect equilib-

rium payoffs, and in states (p,N ,N , ∅) in which negotiations start from scratch, equilibrium

payoffs are the Myerson-Shapley values for the star graph N u.

We will verify this claim by induction over the number of peripheral players that have

yet to reach agreement and the number of peripheral players remaining in the game. The

statement is true for the base case in which there is only one peripheral player without

agreement, since in that case the payoffs prescribed by equations (3)–(4) coincide with the

payoffs in the BRW game. In the induction step, we consider states (o,N ,K,A) in which

at least two links are without agreement, and take as given that the induction hypothesis

is true for states in which fewer peripheral players remain connected to c, and for states in
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which the the number of connected peripheral players is the same but more have already

reached an agreement.

Let mi (o,N ,K,A) and Mi (o,N ,K,A) denote the infimum and supremum payoff of

player i in state (o,N ,K,A) across all no-delay SPEs.

Consider state (c,N ,K,A) starting with an offer T by c to K1p. If K1p rejects, the game

enters state
(
p,N ,KR,A

)
. Peripheral player KR

1p then makes an offer TR that is accepted

by c. After this the game enters state[
p,N ,K −KR

1 ,A+
(
KR

1p, T
R
)]
.

Since one additional peripheral player has an agreement, payoffs in this state are given by

the induction hypothesis. In particular, the payoff of player K1p is

Φ̃K1p

[
N u,Ku −KR

1 ,A+
(
KR

1p, T
R
)]

which is decreasing in TR. The equilibrium payoff of KR
1p satisfies TR ≥ mKR

1p
(p,N ,KR,A).

Thus the rejection payoff of K1p is at most

Φ̃K1p

{
N u,Ku −KR

1 ,A+
[
KR

1p,mKR
1p

(p,N ,KR,A)
]}

.

In equilibrium K1p must accept any offer strictly above this upper bound. Thus c will not

offer strictly more than this upper bound since strictly lower offers would also be accepted.

Furthermore, if an offer T is accepted by K1p, then the game enters state

[p,N ,K −K1,A+ (K1p, T )]

Since there is an additional agreement in this state, payoffs are given by the induction

hypothesis. In particular the payoff of c is

Φ̃c [N u,Ku −K1,A+ (K1p, T )]

which is decreasing in T . Thus we obtain the following lower bound on the payoff of c

mc(c,N ,K,A)

≥ Φ̃c

[
N u,Ku −K1,A+

(
K1p, Φ̃K1p

{
N u,Ku −KR

1 ,A+
[
KR

1p,mKR
1p

(p,N ,KR,A)
]})]

.

(6)

Analogously [ADD MORE DETAILS]

Mc(c,N ,K,A)

≤ Φ̃c

[
N u,Ku −K1,A+

(
K1p, Φ̃K1p

{
N u,Ku −KR

1 ,A+
[
KR

1p,MKR
1p

(p,N ,KR,A)
]})]

.

(7)
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Next, consider state (p,N ,K,A) in which the next action is an offer T byK1p to c. If c rejects,

then c gets to make a counteroffer to K1p and gets at least mc(c,N ,K,A). If c accepts T , then

the game enters state [p,N ,K −K1,A+ (K1p, T )]. Since there is an additional agreement

in this state, payoffs are given by the induction hypothesis. In particular, the central player

obtains

Φ̃c [N u,Ku −K1,A+ (K1p, T )] .

Considering this as a function of T , let

Φ̃−1c (N u,Ku −K1,K1p, x)

denote its inverse. We then obtain the following upper bound for the payoff of K1p:

MK1p (p,N ,K,A) ≤ Φ̃−1c [N u,Ku −K1,K1p,mc(c,N ,K,A)] . (8)

Similarly [ADD MORE DETAILS]

mK1p (p,N ,K,A) ≥ Φ̃−1c [N u,Ku −K1,K1p,Mc(c,N ,K,A)] . (9)

Starting with inequality (6) and repeatedly substituting, in this order, inequalities (9), (7),

(8) and again (6) while cycling through the order of peripheral players until arriving again

at mc(c,N ,K,A), we obtain an inequality of the form

mc (c,N ,K,A) ≥ α (c,N ,K,A) + β (c,N ,K,A)mc (c,N ,K,A)

for appropriately defined coefficients α (c,N ,K,A) and β (c,N ,K,A). It is easy to see that

β (c,N ,K,A) ∈ (0, 1), so we obtain

mc (c,N ,K,A) ≥ [1− β(c,N ,K,A)]−1 α(c,N ,K,A)

with the identical coefficients α (c,N ,K,A) and β (c,N ,K,A). Proceeding analogously but

starting with inequality (7),we obtain

Mc (c,N ,K,A) ≤ [1− β(c,N ,K,A)]−1 α(c,N ,K,A).

Thus mc(c,N ,K,A) = Mc(c,N ,K,A) and (6)–(7) hold as equalities. Thus no-delay SPE

payoffs of offer-making players Φc(c,N ,K,A) and ΦK1p(p,N ,K,A) across the #N (Ku)− 1

lists K that the game is rotating through are uniquely determined by the system of 2 ·
(#N (Ku)− 1) equations

Φc(c,N ,K,A)

= Φ̃c

[
N u,Ku −K1,A+

(
K1p, Φ̃K1p

{
N u,Ku −KR

1 ,A+
[
KR

1p,ΦKR
1p

(p,N ,KR,A)
]})]

,

(10)

ΦK1p (p,N ,K,A)

= Φ̃−1c [N u,Ku −K1,K1p,Φc(c,N ,K,A)] ., (11)
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which in turn implies that all equilibrium payoffs are uniquely determined. [HERE WE

HAVE SHOWN UNIQUENESS BUT NOT YET EXISTENCE. ADD BRIEF DISCUSSION

OF EXISTENCE, WHICH REQUIRES NON-NEGATIVE GAINS FROM TRADE FOR

LINKS.]

Having established that no-delay SPE payoffs are unique, we now verify that they satisfy

the induction hypothesis. We do this by writing down the system of linear equations satisfied

by these payoffs and verify that it is satisfied by the payoffs prescribed by the induction

hypothesis.

We will solve for Φi(o,N ,K,A) for all #N (Ku) players, the two offers types o ∈ {c, p},
and all #N (Ku)− 1 possible lists K that the game is rotating through, for given N and A.

Thus overall we need to solve for 2 ·#N (Ku) · (#N (Ku)− 1) payoffs.

According to equation (10), in state (c,N ,K,A) the central player offers

Φ̃K1p

{
N u,Ku −KR

1 ,A+
[
KR

1p,ΦKR
1p

(p,N ,KR,A)
]}

and this offer is accepted by K1p. By definition this offer is equal to the payoff K1p receives in

state
(
p,N ,KR,A

)
in which K1p is at the end of the line. In other words, when K1p receives

an offer, he is made indifferent to the payoff he would receive at the end of line. Thus (10)

yields the indifference condition

ΦK1p(c,N ,K,A) = ΦK1p

(
p,N ,KR,A

)
. (12)

According to equation (11), in state (p,N ,K,A) the equilibrium offer of K1p makes c in-

different to the payoff he receives in state (c,N ,K,A), thus (11) yields the indifference

condition

Φc(p,N ,K,A) = Φc(c,N ,K,A). (13)

Across lists K and offer types o ∈ {c, p}, the indifference conditions (12)–(13) contribute

2 · (#N (Ku)− 1) equations.

For each offer type o and list K, after K1p has reached an agreement with c, the game

enters a state in which one additional player has an agreement, hence the induction hypoth-

esis prescribes that the payoffs of the players in N (Ku −K1) satisfy the following surplus

splitting conditions

Φc(o,N ,K,A)− Φ̃c(N u − ic,N u − ic, ∅) = Φi(o,N ,K,A)− v(i,N u − ic)

for all i ∈ N (Ku −K1) − c. This contributes #N (Ku) − 2 equations for each combination

of offer type o and list K. Since there are 2 · (#N (Ku)− 1) such combinations, overall this

contributes 2 · (#N (Ku)− 1) · (#N (Ku)− 2) equations.
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Finally, for each of the 2 · (#N (Ku)− 1) combinations of offer type o and list K we have

the adding-up condition∑
i∈N(Ku)

Φi(o,N ,K,A) = v [N (Ku) ,N u]−
∑

(j,Tj)∈A

Tj.

Overall, we have

2 · (#N (Ku)− 1) + 2 · (#N (Ku)− 1) · (#N (Ku)− 2) + 2 · (#N (Ku)− 1)

2 · (#N (Ku)− 1) #N (Ku)

equations from indifference, surplus-splitting, and adding-up, respectively, in the same num-

ber of unknowns. They are linearly independent [ADD DETAILS] and thus determine a

unique solution. It is straightforward to verify that this solution is given by equation (5):

simply substitute Φi(o,N ,K,K) = Φ̃i (N u,Ku,A) and note that the system reduces exactly

to the system of #N (Ku) equations (3)–(4).

3 General Graph

The original Rolodex game has a central player that is involved in every negotiation, thus it

does not immediately generalize to general graphs. In this section we modify the Rolodex

game to accommodate negotiations that are governed by a general graph. Links in this

graph negotiate sequentially, with one of the linked players making an offer to the other. If

the respondent rejects, the link moves to the end of the line and the direction of the offer is

reversed for the next negotiation of this link. As in the original Rolodex game, all agreements

are renegotiated in the event of a breakdown. Recall that in the original game a bargaining

sessions has two offers, first by the peripheral player and then by the central player, and this

sequence of offers is the same in each bargaining session. Here each bargaining session has

only one offer, but the direction of the offer is reversed for the next negotiation of the link. Of

course the game of this section also works with a star graph. In this case the central planner

would again be involved in all negotiations, but with the shortened bargaining sessions with

direction reversal. Thus this provides a somewhat different protocol that yields the Myerson-

Shapley value for a star graph, yet both protocols have the key feature that a peripheral

player rotates to the end of the line after a rejection.

3.1 Extensive Form

We describe the extensive form in a recursive way. At a given point in the game there is a

list of directed links N , with at most one link per pair of players. Once again we use the
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superscript u to obtain the set of undirect links corresponding to a list of directed links.

Thus N u is the graph that containing the links remaining at this point in the game. There

is a second list of directed links K contains the links that have not yet reached an agreement,

in the order in which they will negotiate. Here the direction indicates which player will make

an offer when it is the turn of the link to negotiate. There is also a set of agreements A.

Each agreement is a pair consisting of a directed link which indicates the direction of the

transfer and a transfer amount. The state of the game is described by (N ,K,A).

The game ends when K is empty, that is, when all links have reached an agreement. For

a player i, let hi denote the component of N u to which the player belongs. Then the payoff

of player i is

vi (hi,N u)−
∑

{ (jk,Tjk)∈A|j=i}
Tjk +

∑
{ (jk,Tjk)∈A|k=i}

Tjk.

Here vi (hi,N u) is the part of the value v (hi,N u) that directly goes to player i before any

transfers, and it satisfies the adding-up condition∑
i∈h

vi (h,N u) = v (h,N u)

for every component h ∈ C (N u) and every graph N u. The allocation before transfers given

by the functions vi (hi,N u) will not matter for equilibrium payoffs, but given this it of course

matters for equilibrium transfers.

If K is nonempty, then the game continues. Let K1 denote the first directed link in the

list K. This link goes from player K1o to player K1r. The next action is that K1o offers a

transfer TK1 to player K1r. Player K1r responds by rejecting or accepting the offer. If K1r

accepts, then link K1 is deleted from the list of links without agreement and the agreement

(K1, TK1) is added to the setA. Thus the game continues in state [N ,K −K1,A+ (K1, TK1)].

If K1r rejects, then with probability q#K there is a breakdown. Notice that the breakdown

probability is allowed to depend on the number of links without agreement, for reasons to

be discussed further below. If there is no breakdown, then link K1 rotates to the end of the

list. Let KR denote the resulting new list. The game then continues in state
(
N ,KR,A

)
. If

there is a breakdown, then the link K1 is deleted from N and all agreements are also deleted.

The new order of negotiation is given by N after deletion of K1. Thus the game continues

in state (N −K1,N −K1, ∅).
We are interested in the limit as breakdown probabilities approach zero. The role of

breakdown is to act as a force towards agreement that ensures uniqueness of no-delay SPE.

This force is only needed in situations in which a single link remains without agreement,

since otherwise the prospect for a link to rotate to the end of the list already acts as such a
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force. Thus without loss of generality we set qk = 0 for k > 1. Furthermore, notice that for

situations with #K = 1 the extensive form coincides with that of the Binmore-Rubinstein-

Wolinsky bilateral alternating offers game with risk of breakdown, which is known to have a

unique SPE if the breakdown probability is strictly positive. For simplicity, here we directly

focus on the limiting payoffs as the breakdown probability approaches zero.

3.2 No-delay SPE

Let N (Ku) denote the set of players involved in a link in Ku. For all i ∈ N (Ku), recursively

define Φ̃i (N u,Ku,A) via the surplus splitting property

Φ̃i (N u,Ku,A)− Φ̃i (N u − ij,N u − ij, ∅) = Φ̃j (N u,Ku,A)− Φ̃j (N u − ij,N u − ij, ∅) (14)

for all i, j ∈ N (Ku) with ij ∈ Ku, and the adding-up property∑
i∈h′

Φ̃i (N u,Ku,A) = v(h,N u) +
∑

{ (jk,Tjk)∈A|k∈h′}
Tjk −

∑
{ (jk,Tjk)∈A|j∈h′}

Tjk. (15)

for every h′ ∈ C (Ku) where h is the component of N u that contains h′.

The first sum on the right-hand side is the sum of all already agreed-upon transfers to

be received by a set of players that constitutes a component of the set of links Ku that still

have to reach an agreement. The second sum is the sum of all already agreed-upon transfers

that are to be paid by this set of players. It follows immediately that

Φ̃i(N u,N u, ∅) = Ψi(N u)

since equations (14) and (15) coincide with the properties of fair allocation in equation (1)

and component balance in equation (2) for this case, respectively.

We will show that no-delay SPE payoffs in state (N ,K,A) are unique and given by

Φi (N ,K,A) = Φ̃i (N u,Ku,A) . (16)

Thus the order in which links negotiate does not affect equilibrium payoffs, and in state

(N ,N , ∅) in which negotiations start from scratch, equilibrium payoffs are the Myerson-

Shapley values for the graph N u.

We will verify this claim by induction over the number of links that have yet to reach

agreement and the number of links remaining in the game. The statement is true for the

base case in which there is only one link without agreement, since in that case the payoffs

prescribed by equations (14)–(15) coincide with the payoffs in the BRW game. In the induc-

tion step, we consider a state (N ,K,A) with #K > 1 and take as given that the induction
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hypothesis is true for states in which negotiations start over from scratch with fewer remain-

ing links, and for states in which the number of remaining links in the network is the same

but more links have already reached an agreement.

Let mi (N ,K,A) and Mi (N ,K,A) denote the infimum and supremum payoff of player

i in state (N ,K,A) across all no-delay SPEs. Consider state (N ,K,A). Without loss of

generality, we can restrict attention to lists K that constitute a component and for which

each link is essential for K to be a component, that is, removing any link would break up K
into multiple components. [ADD MORE DETAIL.] Thus #K = N (Ku)− 1.

We will now establish inequalities between the infima and suprema across equilibrium

payoffs that together establish uniqueness of no-delay SPE payoffs.

In state (N ,K,A) the first link to negotiate is K1. Here K1o makes an offer to K1r. If

this offer is rejected the state changes to
(
N ,KR,A

)
and the next link to negotiate is KR

1 ,

with an offer from KR
1o to KR

1r. There are two main cases depending on whether a higher

transfer from KR
1o to KR

1r in state
(
N ,KR,A

)
is beneficial for the rejection payoff of K1r.

Notice that KR breaks into two components without the link KR
1 and the two players KR

1o

and KR
1r end up in different components. If K1r ends up in a component with KR

1o, then a

higher transfer from KR
1o is detrimental for K1r. We refer to this as case o since K1r ends up

with the next offer-making player. In case r, K1r ends up in a component with KR
1r and thus

benefits from a higher transfer from KR
1o to from KR

1r. In both cases, a lower bound on the

payoff of KR
1o puts an upper bound on the transfer to KR

1r. In case o this puts a lower bound

on the rejection payoff of K1r in state (N ,K,A). This in turn puts a upper bound on the

payoff of K1o in state (N ,K,A).

We now explicitly derive the relationship between the bounds in case o. Using the

induction hypothesis, the payoff of KR
1o in

(
N ,KR,A

)
as a function of the transfer T he

agrees to make is given by

Φ̃KR
1o

[
N u,Ku −KR

1 ,A+
(
KR

1 , T
)]
.

Considering this payoff as a function of T , let

Φ̃−1KR
1o

(
N u,Ku −KR

1 ,A,KR
1 , x

)
denote its inverse. A lower bound mKR

1o

(
N ,KR,A

)
on the payoff of KR

1o then implies the

upper bound

T ≤ Φ̃−1KR
1o

[
N u,Ku −KR

1 ,A,KR
1 ,mKR

1o

(
N ,KR,A

)]
.

Using the induction hypothesis, the payoff of K1r in state
(
N ,KR,A

)
as a function of T is

Φ̃K1r

[
N u,Ku −KR

1 ,A+
(
KR

1 , T
)]
.
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In case o this is decreasing in T since K1r continues in a component with KR
1o. Thus the

upper bound on T yields a lower bound

mK1r

(
N ,KR,A

)
≥ Φ̃K1r

(
N u,Ku −KR

1 ,A+
{
KR

1 , Φ̃
−1
KR

1o

[
N u,Ku −KR

1 ,A,KR
1 ,mKR

1o

(
N ,KR,A

)]})
.

(17)

Case r differs in that we obtain an upper bound rather than a lower bound

MK1r

(
N ,KR,A

)
≤ Φ̃K1r

(
N u,Ku −KR

1 ,A+
{
KR

1 , Φ̃
−1
KR

1o

[
N u,Ku −KR

1 ,A,KR
1 ,mKR

1o

(
N ,KR,A

)]})
.

(18)

In inequalities (17)–(18) we have infima on the right hand side. Similar arguments yield the

reverse inequalities with infima and suprema swapped, but the same functional form. Thus

in case o we have

MK1r

(
N ,KR,A

)
≤ Φ̃K1r

(
N u,Ku −KR

1 ,A+
{
KR

1 , Φ̃
−1
KR

1o

[
N u,Ku −KR

1 ,A,KR
1 ,MKR

1o

(
N ,KR,A

)]}) (19)

and in case r we have

mK1r

(
N ,KR,A

)
≥ Φ̃K1r

(
N u,Ku −KR

1 ,A+
{
KR

1 , Φ̃
−1
KR

1o

[
N u,Ku −KR

1 ,A,KR
1 ,MKR

1o

(
N ,KR,A

)]})
.

(20)

Now consider state (N ,K,A). If K1r accepts an offer T from K1o, then the induction

hypothesis implies that his payoff is

Φ̃K1r [N u,Ku −K1,A+ (K1, T )] .

If K1r rejects, he obtains his payoff in state
(
N ,KR,A

)
. Thus T must be such that K1r

obtains at least this payoff. Hence a lower bound mK1r

(
N ,KR,A

)
yields a lower bound on

T :

T ≥ Φ̃−1K1r

[
N u,Ku −K1,A,K1,mK1r

(
N ,KR,A

)]
This in turn implies an upper bound on the payoff of K1o:

MK1o (N ,K,A)

≤ Φ̃K1o

(
N u,Ku −K1,A+

{
K1, Φ̃

−1
K1r

[
N ,Ku −K1,A,K1,mK1r

(
N ,KR,A

)]})
.

(21)

Once again we also obtain the flipped inequality

mK1o (N ,K,A)

≥ Φ̃K1o

(
N u,Ku −K1,A+

{
K1, Φ̃

−1
K1r

[
N ,Ku −K1,A,K1,MK1r

(
N ,KR,A

)]})
.

(22)
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Having derived inequalities (17)–(22), we can now combine them as follows. We start with in-

equality (22), which provides a lower bound for mK1o (N ,K,A) in terms of MK1r

(
N ,KR,A

)
.

Depending on whether case o or r applies, we then use inequality (19) or inequality (18),

respectively, to bound MK1r

(
N ,KR,A

)
in this inequality. This gives us a lower bound for

mK1o (N ,K,A) in terms of either MKR
1o

(
N ,KR,A

)
or mKR

1o

(
N ,KR,A

)
. We keep going like

this, cycling through the links until we have a lower bound for mK1o (N ,K,A) in terms of

mK1o (N ,K,A), which we obtain after at most two full cycles. The resulting inequality is

mK1o (N ,K,A) ≥ α (N ,K,A) + β (N ,K,A)mK1o (N ,K,A)

for appropriately defined coefficients α (N ,K,A) and β (N ,K,A). It is easy to see that

β (N ,K,A) ∈ (0, 1), so we obtain

mK1o (N ,K,A) ≥ [1− β (N ,K,A)]−1 α (N ,K,A) .

Proceeding analogously but starting with inequality (21),we obtain

MK1o (N ,K,A) ≤ [1− β (N ,K,A)]−1 α (N ,K,A) .

Thus mK1o (N ,K,A) = MK1o (N ,K,A) and (17)–(22) hold as equalities. Thus no-delay

SPE payoffs ΦK1o (N ,K,A) and ΦK1r

(
N ,KR,A

)
across the different lists K are uniquely

determined by the system

ΦK1o (N ,K,A)

= Φ̃K1o

(
N u,Ku −K1,A+

{
K1, Φ̃

−1
K1r

[
N ,Ku −K1,A,K1,ΦK1r

(
N ,KR,A

)]})
, (23)

ΦK1r

(
N ,KR,A

)
= Φ̃K1r

(
N u,Ku −KR

1 ,A+
{
KR

1 , Φ̃
−1
KR

1o

[
N u,Ku −KR

1 ,A,KR
1 ,ΦKR

1o

(
N ,KR,A

)]})
. (24)

[HERE WE HAVE SHOWN UNIQUENESS BUT NOT YET EXISTENCE. ADD BRIEF

DISCUSSION OF EXISTENCE, WHICH REQUIRES NON-NEGATIVE GAINS FROM

TRADE FOR A LINKS.]

Having established that no-delay SPE payoffs are unique, we now verify that they satisfy

the induction hypothesis. We do this by writing down the system of linear equations satisfied

by these payoffs and verify that it is satisfied by the payoffs prescribed by the induction

hypothesis.

We will solve for Φi (N ,K,A) for all #N (Ku) players and all the lists of links that the

game rotates through starting from an initial list, for given N and A. Recall that each link

in K is essential for K to be a single component. This implies that K contains #N (Ku)− 1

links. Since the direction of links is reversed whenever a link moves to the end of the line, the

13



game moves through 2 (#N (Ku)− 1) different lists until returning to the initial list. Thus

we need to solve for #N (Ku) · 2 (#N (Ku)− 1) payoffs.

According to equation (23), in state (N ,K,A) player K1o offers a transfer

Φ̃−1K1r

[
N ,Ku −K1,A,K1,ΦK1r

(
N ,KR,A

)]
and this offer is accepted accepted by K1r. By definition this transfer makes K1r indifferent

to the equilibrium payoff ΦK1r

(
N ,KR,A

)
he receives in state

(
N ,KR,A

)
in which link K1

is at the end of the line. In other words, when K1r receives an offer, he is made indifferent

to the payoff he would receive if his link with K1o moves to the end of the line. Thus (23)

yields the indifference condition

ΦK1r (N ,K,A) = ΦK1r

(
N ,KR,A

)
. (25)

This contributes 2 · (#N (Ku)− 1) equations, one for each value of K.

For each value of the list K, after link K1 has reached agreement, the game enters a state

in which one additional link has reached an agreement and the links without agreement are

Ku − K1. The induction hypothesis implies that for a player with a link in Ku − K1 the

equilibrium payoff is given by

Φi (N ,K,A) = Φ̃i [N u,Ku −K1,A+ (K1, TK1)]

and thus for links ij ∈ Ku −K1 equation (14) implies

Φi (N ,K,A)− Φ̃i (N u − ij,N u − ij, ∅) = Φi (N ,K,A)− Φ̃j (N u − ij,N u − ij, ∅) .

Since Ku − K1 contains #N (Ku) − 2 links and K takes 2 · (#N (Ku)− 1) values, this con-

tributes 2 · (#N (Ku)− 1) · (#N (Ku)− 2) equations.

Finally, for each value of K we have the adding-up condition∑
i∈N(Ku)

Φi (N ,K,A) = v (h,N u) +
∑

{ (jk,Tjk)∈A|k∈N(Ku)}
Tjk −

∑
{ (jk,Tjk)∈A|j∈N(Ku)}

Tjk. (26)

where h is the component of N u containing Ku. Since K takes 2 · (#N (Ku)− 1) values, this

is also the number of equations contributed.

Taken together, we have 2 · (#N (Ku)− 1) · #N (Ku) equations in the same number of

unknowns. These equations are linearly independent [ADD DETAILS] and thus determine

a unique solution. It is straightforward to show that this solution is given by (16): sim-

ply substitute Φi (N ,K,A) = Φ̃i (N u,Ku,A) and note that the system reduces exactly to

equations (14)–(15).
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