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We develop a search-theoretic model of the product market that generates price dispersion 
across and within stores. Buyers differ with respect to their ability to shop around, both at 
different stores and at different times. The fact that some buyers can shop from only one 
seller while others can shop from multiple sellers causes price dispersion across stores. 
The fact that the buyers who can shop from multiple sellers are more likely to be able to 
shop at multiple times causes price dispersion within stores. Specifically, it causes sellers to 
post different prices for the same good at different times in order to discriminate between 
different types of buyers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a contribution to the theory of equilibrium price dispersion and it is motivated by three facts. First, it is 
well-known that the same product is sold at very different prices, even when one restricts attention to the same geographi-
cal area and the same period of time. In his pioneering article on price dispersion, Stigler (1961) finds that the same car was 
sold at very different prices by different dealerships in Chicago. Sorensen (2000) finds that the average standard deviation 
of the price posted by different pharmacies for the same drug in the same town in upstate New York is 22%. In a systematic 
study of price dispersion that covers 1.4 million goods in 54 geographical markets within the US, Kaplan and Menzio (2015)
find that the average standard deviation of the price at which the same product is sold within the same geographical area 
and during the same quarter is 19%. Second, it is well-known that price dispersion is caused both by differences in prices 
across different stores and by differences in prices within each store. For instance, Kaplan and Menzio (2015) find that ap-
proximately half of the variance of prices for the same good in the same area and in the same quarter is due to the fact that 
different stores sell the good at a different price on average, while the remaining half is due to the fact that the same store 
sells the same good at different prices during the same quarter.1 Third, as documented by Nakamura and Steinsson (2008)
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and Klenow and Kryvtsov (2008), a large fraction of all the changes in the price of a particular good at a particular store 
are due to temporary sales, defined as temporary price reductions.2

Motivated by the above observations, we develop a theory of price dispersion across and within stores by building 
a model that combines the search theory of price dispersion across sellers (see, e.g., Burdett and Judd, 1983) with the 
intertemporal price discrimination theory of temporary sales (see, e.g., Conlisk et al., 1984). To this aim, we build a model 
of the market for an indivisible good. On the demand side, there are buyers who differ with respect to their ability to shop 
at different stores, as well as with respect to their ability to shop at different times: Some buyers can shop from only one 
seller while others can shop from multiple sellers, and some buyers can shop only during the day while others can shop 
both during the day and during the night. On the supply side, there are identical sellers and each seller posts a (potentially 
different) price for the good during the day and during the night.

We prove the existence and uniqueness of equilibrium. We find that the equilibrium features dispersion in the average 
price posted by different sellers (i.e., price dispersion across stores). Moreover, if the type of buyers who are more likely to 
be able to shop from multiple sellers are also more likely to be able to shop at different times, the equilibrium also features 
dispersion in the price posted by the same seller during the day and during the night (i.e., price dispersion within stores). 
In contrast, if the type of buyers who are more likely to be able to shop from multiple sellers are less likely to be able to 
shop at different times, the equilibrium does not feature any variation in the price posted by the same seller during the day 
and during the night (i.e., the equilibrium displays no price dispersion within stores).

The properties of equilibrium are intuitive. Price dispersion across sellers arises for essentially the same reason as in 
Burdett and Judd (1983). That is, whenever sellers face a population of potential customers that includes both captive 
buyers (i.e. buyers who cannot shop from any other seller) and non-captive buyers (i.e., buyers who can shop elsewhere), 
the equilibrium must feature price dispersion. Price dispersion within sellers arises if and only if the buyers who are more 
likely to be non-captive are also more likely to be able to shop at any time. In fact, a seller would like to charge higher 
prices to captive buyers than to non-captive buyers, because—given price dispersion across stores—captive buyers have on 
average a higher reservation price. If the non-captive buyers are more likely to be able to shop at any time while captive 
buyers are more likely to be able to only shop during the day, a seller can successfully price discriminate by posting a 
higher price during the day and a lower price during the night. If, on the other hand, non-captive buyers are less likely 
to be able to shop at any time, a seller cannot successfully price discriminate. Indeed, if the seller posted a lower price at 
night, he would end up offering a better deal to the captive buyers. And if the seller posted a lower price during the day, 
he would end up offering a better deal to both the non-captive and the captive buyers.

Our theory of price dispersion across and within sellers requires the same assumptions as the search theory of price 
dispersion and the intertemporal price discrimination theory of sales. As in the search theory of price dispersion (see, 
e.g., Butters, 1977; Varian, 1980; Burdett and Judd, 1983), we assume that some buyers can shop from multiple sellers 
while others can shop from only one seller. The assumption can be seen as a by-product of heterogeneity in the buyers’ 
opportunity cost of shopping at different locations. As in the intertemporal price discrimination theory of sales (see, e.g., 
Conlisk et al., 1984; Sobel, 1984; Albrecht et al., 2013), we assume that some buyers need to shop at a particular time while 
others can shop at any time. The assumption can be seen as a by-product of heterogeneity in the buyers’ opportunity cost 
of shopping at different times. Additionally, the theory of intertemporal price discrimination assumes that the buyers who 
must shop at a particular time have a higher willingness to pay for the good. In this paper, we make the closely related 
assumption that buyers who must shop at a particular time are less likely to be able to shop from multiple sellers which, 
in the presence of price dispersion, implies that these buyers have a higher reservation price. Basically, we endogenize the 
difference in the willingness to pay between buyers who are flexible and those who are not flexible with respect to the 
shopping schedule, and we do so in a natural way, as buyers who have a low opportunity cost of shopping at different 
locations presumably also have a low opportunity cost of shopping at different points in time. Even though there is not 
much direct evidence on the assumptions underlying the search theory of price dispersion and the intertemporal price 
discrimination theory of sales,3 these theories are commonly viewed as the leading explanations for, respectively, dispersion 
in the price of a particular good across different stores and temporary sales.

The assumptions and properties of our model are a simple combination of the properties of models of price dispersion 
and intertemporal price discrimination. Yet, the characterization of the equilibrium of our model presents novel challenges 
and calls for a novel solution strategy. As this is the main technical contribution of the paper, let us expand on this point. In 
Burdett and Judd (1983), each seller posts one price. In equilibrium, each seller must attain the same profit by posting any 

2 Temporary sales account for approximately half of all the changes in the price of a particular good at a particular store. They account for a larger 
fraction of the within-seller price variance because, on average, price changes due to temporary sales are three times larger than regular price changes (see 
Nakamura and Steinsson, 2008).

3 Evidence on the assumptions of the model is hard to come by because the assumptions involve heterogeneity across buyers in the number of their 
shopping option, not in the number of their choices. If one is willing to extrapolate the assumptions outside of the model, one can find some evidence 
that there is heterogeneity across buyers in their willingness to shop at different location, in their willingness of shopping at different times, and that 
the two traits are positively correlated. For instance, Aguiar and Hurst (2007) find that retirement-age people spend more time on each shopping trip 
(perhaps to reach less convenient locations and, if so, revealing a greater willingness to shop around), take more shopping trips (perhaps to take advantage 
of asynchronized sales and, if so, revealing a greater willingness to shop at different times), and end up paying lower prices than younger people. Similarly, 
Kaplan and Menzio (2015, 2016) show that non-employed, working-age people spend more time shopping, take more shopping trips and pay lower prices 
than employed people.
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price on the support of the price distribution. Then, characterizing the equilibrium amounts to solving one equation—the 
seller’s equal profit condition—for one unknown—the price distribution. In our model, each seller posts two prices, a day and 
a night price, and the two prices interact in the seller’s profit as some of the customers can shop at any time and pick the 
lowest price. The interaction between the prices results in the constraint that the seller’s night price be non-greater than 
his day price. As in Burdett and Judd (1983), each seller must attain the same profit by posting any pair of prices on the 
support of the equilibrium price distribution. However, this observation is no longer enough to characterize the equilibrium, 
as it provides one equation—the seller’s equal profit condition—for two unknowns—the distribution of day prices and the 
distribution of night prices. More is needed to solve for the equilibrium.

The key step to solve for the equilibrium of our model is showing that—depending on parameter values—one of two cases 
may arise. Either the seller’s profit from day and night trades are both constant on the support of the respective marginal 
price distributions, or the seller’s profit from night trades is strictly increasing in the night price. In the first case, we have 
two equations—the seller’s equal profit condition from day and night trades—for two unknowns—the marginal distributions 
of day and night prices. After solving these equations, we find the equilibrium joint price distribution as one (of many) 
distribution that is consistent with the marginals and such that every seller posts a lower price at night than during the 
day. In the second case, every seller wants to post as high a price as possible during the night, subject to the constraint that 
the night price is non-greater than the day price. In this case, the equilibrium is such that every seller posts the same price 
in both periods and solving for the common marginal distribution boils down to solving one equation—the seller’s equal 
profit condition given that the day and night prices are equal—in one unknown—the common marginal distribution of day 
and night prices.

The solution technique developed in this paper may be useful to solve other versions of Burdett and Judd (1983) where 
sellers set multiple prices. Indeed, Kaplan et al. (2016) borrow it to solve for the equilibrium of a version of Burdett and Judd
(1983) in which sellers carry multiple goods and buyers seek multiple goods. Lester et al. (2015) independently developed 
an argument to characterize the equilibrium of a version of Burdett and Judd (1983) in which sellers post multiple contracts 
to screen different types of buyers.4 It is worth noting that these are the very first successful attempts at solving for 
multidimensional price distributions in search models of imperfect competition.5

2. Environment

We consider the market for an indivisible good that operates in two subperiods: day and night. On one side of the 
market, there is a measure 1 of identical sellers who can produce the good on demand at a constant marginal cost, which 
we normalize to zero. Each seller simultaneously and independently posts a pair of prices (pd, pn), where pd ∈ [0, u] is the 
price of the good during the day, pn ∈ [0, u] is the price of the good during the night, and u > 0 is the buyers’ valuation 
of the good. We denote as G(pd, pn) the cumulative distribution function of prices across sellers. We denote as Fd(pd)

the marginal cumulative distribution function of day prices across sellers and with φd(pd) the measure of sellers with a 
day price equal to pd (i.e., φd(pd) = Fd(pd) − Fd(pd−) denotes a mass point in the marginal distribution Fd). Similarly, we 
denote as Fn(pn) the marginal distribution of night prices and with φn(pn) = Fn(pn) − Fn(pn−) the measure of sellers with 
a night price of pn . We also find it useful to denote as Fm(p) the measure of sellers whose lowest price (between day and 
night) is non-greater than p and with φm(p) the measure of sellers whose lowest price is equal to p.

On the other side of the market, there is a measure θx > 0 of buyers of type x, and a measure θy > 0 of buyers of 
type y. The two types of buyers differ with respect of their ability to shop from different sellers, as well as with respect of 
their ability to shop at different times. In particular, a buyer of type x is in contact with only one seller with probability 
αx ∈ (0, 1) and with multiple (for the sake of simplicity, two) sellers with probability 1 − αx . The buyer observes both the 
day and night price of the sellers with whom he is contact. The buyer is able to shop from these sellers during both day 
and night with probability 1 − βx . With probability βx ∈ (0, 1), the buyer is able to shop only during the day. Similarly, 
a buyer of type y is in contact with one seller with probability αy , and with multiple (two) sellers with probability 1 − αy . 
A buyer of type y is able to shop from the contacted sellers during both day and night with probability 1 − βy , and only 
during the day with probability βy . Both types of buyers enjoy a utility of u − p if they purchase the good at the price p, 
and a utility of zero if they do not purchase the good. Without loss in generality, we assume that buyers of type x are on 
average in contact with fewer sellers than buyers of type y, i.e. αx ≥ αy .

The definition of equilibrium for this model is standard (see, e.g., Burdett and Judd, 1983 or Head et al., 2012).

Definition 1. An equilibrium is a price distribution G such that the seller’s profit is maximized everywhere on the support 
of G .

4 The characterization strategy in Lester et al. (2015) is different than ours, as their model is different than ours. They show that the seller’s profit 
function is supermodular in the utilities associated with the contracts offered to the two types of buyers in the market. They then use the supermodularity 
of the profit function to show that any equilibrium is such that the two contracts offered by a seller have the same rank in the marginal distributions of 
utility offered by sellers to each type of buyer. Garrett et al. (2016) use a very similar characterization strategy as Lester et al. (2015) in a very related 
model.

5 Zhou (2014) and Rhodes (2015) are also search-theoretic models in which stores sell multiple goods and, hence, post multiple prices. Yet, solving for 
the equilibrium of these models does not present the technical challenges that we face. This is because, in the models by Zhou (2014) and Rhodes (2015), 
the seller’s optimal pricing strategy is generally unique and, hence, solving for the equilibrium does not require solving for a distribution of prices.
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Before turning to the characterization of equilibrium, a few comments about the interpretation of the environment are 
in order. We assume that some buyers are in contact with one seller and others are in contact with multiple sellers. We 
think of the contacts as the network of sellers that the buyer can easily access (e.g., the sellers on the way between the 
buyer’s home and his workplace, the sellers that are close to his children’s preschool, etc. . . ), rather than the set of sellers 
whose price is known to the buyer. In this sense, we think of our model as a version of Hotelling (1929) where the buyer’s 
transportation cost to different sellers is either zero or infinity, rather than as a model in which buyers discover sellers 
through a search process. Yet, just as in the search models of Butters (1977) and Burdett and Judd (1983), the fraction of 
buyers in contact with multiple sellers is the parameter that controls the degree of competitiveness of the product market.

We assume that some buyers can shop only during the “day,” while others can shop both during the day and during the 
“night.” We do not think of day and night literally. Instead, we interpret the “day” as the time when all buyers are able to 
shop and the “night” as the time when only a subset of buyers is able to shop. For instance, the “day” might be the time 
when both employed and non-employed people can shop (i.e., after 5 PM), and the “night” might be the time when only 
the non-employed people can shop (i.e., before 5 PM). Alternatively, the “night” might be the days of the week when only 
people with a flexible schedule can shop (i.e., Monday through Friday), and the “day” might be the days when everyone can 
shop (i.e., the week-end). As in Conlisk et al. (1984) or Albrecht et al. (2013), it is the fact that some buyers can strategically 
time their purchases to take advantage of low prices while others cannot that gives sellers the opportunity to carry out 
some intertemporal price discrimination. Notice that the opportunity for intertemporal price discrimination also arises if we 
assume that a group of buyers needs to shop at a particular time that is idiosyncratic to each buyer (rather than being the 
day for all buyers), while another group of buyers can shop at any time. Under this alternative assumption, all times are 
equally convenient for shopping and, thus, “night” and “day” have no special meaning besides being two different periods. 
In either case, a seller who posts a lower price during the night than during the day runs something that looks very much 
like a temporary sale, i.e. a price reduction that lasts for some period of time (the night) and then disappears (when the 
next day comes).

3. Characterization of equilibrium

This section contains a complete characterization of equilibrium. Section 3.1 shows that, without loss in generality, we 
can restrict attention to equilibria in which every seller posts a night price non-greater than the day price. Section 3.2 builds 
on this insight to show that depending on parameter values only one of two cases can emerge in equilibrium. Either the 
seller’s profit from night trades is constant with respect to the night price, or the seller’s profit from night trade is strictly 
increasing in the night price. Section 3.3 focuses on the first case, which occurs when buyers of type x are not only more 
likely to be captive to one seller but are also more likely to have to shop during the day. We establish the existence and 
uniqueness of equilibrium, characterize the equilibrium marginal distribution of night and day prices, and the equilibrium 
joint price distribution. We show that the equilibrium features dispersion across and within sellers. Section 3.4 focuses on 
the case in which night profits are strictly increasing in the night price. This case occurs when buyers of type x are more 
likely to be captive to one seller but less likely to have to shop during the day. We establish the existence and uniqueness 
of equilibrium, characterize the equilibrium marginal distribution of night and day prices, and the equilibrium joint price 
distribution. We show that the equilibrium features dispersion across but not price dispersion within sellers. Section 3.5
derives comparative statics for the equilibrium with both types of price dispersion.

3.1. General property of equilibrium

In this subsection, we show that we can restrict attention to equilibria G in which sellers post prices (pd, pn) such that 
pn ≤ pd . This is the case because—by assumption—all of the buyers who can shop at night can also shop during the day 
and, hence, a seller posting a higher price during the night than during the day enjoys the same profit and exerts the same 
competition on other sellers as if he were to post the day price in both periods.

To formalize the above argument, we need to write down the profit function V (pd, pn) for a seller posting arbitrary 
prices (pd, pn) ∈ [0, u]2. The profit function is

V (pd, pn) = [μ1d + μ2d(1 − Fd(pd) + φd(pd)/2)] pd

+ [μ1n + μ2n(1 − Fm(min{pd, pn}) + φm(min{pd, pn})/2)] min{pd, pn},
(1)

where the constants μ1d and μ1n are defined as

μ1d = θxαxβx + θyαyβy,

μ1n = θxαx(1 − βx) + θyαy(1 − βy),
(2)

and the constants μ2d and μ2n are defined as

μ2d = 2θx(1 − αx)βx + 2θy(1 − αy)βy,

μ = 2θ (1 − α )(1 − β ) + 2θ (1 − α )(1 − β ).
(3)
2n x x x y y y
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Let us carefully explain the expressions (1)–(3). First, consider the constants μ1d , μ1n , μ2d , μ2n . The constant μ1d
denotes the average number of buyers who contact a particular seller and who can shop only from that seller and who can 
only shop during the day. This constant is given by the total measure of contacts for buyers who can only shop from only 
one seller and only during the day divided by the total measure of sellers. The constant μ2d denotes the average number 
of buyers who contact a particular seller and who can shop from multiple sellers and at both times of day. This constant 
is given by the total measure of contacts for buyers who can shop from multiple stores and at both times of day divided 
by the total measure of sellers. Similarly, the constant μ1n denotes the average number of buyers who contact a particular 
seller and who can shop only from that seller but both during the day and during the night. The constant μ2n denotes the 
average number of buyers who contact a particular seller and who can shop from multiple sellers and at multiple times.

Now, consider the first line in the profit function (1). The seller contacts μ1d buyers who are not in touch with any other 
vendor and who can only shop during the day. These buyers are captive and they purchase the good from the seller at the 
price pd with probability 1. The seller contacts μ2d buyers who can shop from another vendor and can only shop during 
the day. These buyers are not captive and they purchase the good from the seller at the price pd only if the price offered 
by their second contact is strictly greater than pd , an event that occurs with probability 1 − Fd(pd), or if the price offered 
by their second contact is equal to pd and they break the tie in favor of the seller, an event that occurs with probability 
φd(pd)/2.

Next, consider the second line in the profit function (1). The seller contacts μ1n buyers who are not in touch with any 
other vendor but who can only shop both during the day and during the night. These buyers purchase the good from the 
seller at the lowest price between pd and pn with probability 1. The seller contacts μ2n buyers who are in touch with a 
second vendor and who can shop both during the day and during the night. These buyers purchase the good from the seller 
at the lowest price between pd and pn with probability 1 − Fm(min{pd, pn}) + φm(min{pd, pn})/2.

Notice that if a seller posts a day price greater than the night price, he attains the same profit as if he posted the day 
price in both periods. Formally,

V (pd, pn) = V (pd, pd), ∀(pd, pn) ∈ [0, u]2 and pn > pd . (4)

Indeed, if pn > pd , the seller never makes a sale at night. The customers who can only shop during the day will purchase at 
the price pd . The customers who can shop at both times will choose to purchase during the day at the price pd . Therefore, 
the seller enjoys the same profit if he were to post the prices (pd, pd) rather than (pd, pn).

Now, consider an equilibrium G in which some sellers may post prices (pd, pn) with pn > pd . Consider an alternative 
putative equilibrium G∗ in which every seller posting (pd, pn) changes his prices to (pd, min{pd, pn}). That is, every seller 
posting (pd, pn) with pn ≤ pd keeps his prices unchanged, while every seller posting (pd, pn) with pn > pd changes his 
prices to (pd, pd). Clearly, the marginal price distributions F ∗

d and F ∗
m associated with G∗ are the same as the marginal 

price distributions Fd and Fm associated with G . Take any seller who, in the original equilibrium, posts prices (pd, pn)

with pn ≤ pd . Given G , the prices (pd, pn) maximize the seller’s profit. Given G∗ , the prices (pd, pn) also maximize the 
seller’s profit because the profit function (1) only depends on the marginal distribution of day prices and on the marginal 
distribution of lowest prices which are the same under G and G∗ . Now, take any seller who, in the original equilibrium, posts 
prices (pd, pn) with pn > pd . Given G , the prices (pd, pn) maximize the seller’s profit. In the alternative equilibrium, the 
seller posts the prices (pd, pd) instead. Given G∗ , these prices also maximize the seller’s profit because the profit function 
(1) is unchanged and—as shown in (4)—the seller is indifferent between posting a higher price during the night than during 
the day and charging the same price during the night as during the day. Therefore, G∗ is an equilibrium. Moreover, G∗ is 
equivalent to G , in the sense that every seller makes the same number of sales and enjoys the same profit under G∗ and G , 
and every buyer purchases the good at a price drawn from the same distribution under G∗ and G .

We have therefore established the following proposition.

Proposition 1. Let G be an equilibrium. Consider the distribution G∗ derived from G by replacing every seller posting (pd, pn) with a 
seller posting (pd, min{pd, pn}).

(i) The distribution G∗ is an equilibrium.
(ii) The equilibrium G∗ is equivalent to G: the sales and profit of a seller posting (pd, min{pd, pn}) in G∗ are the same as those of a 

seller posting (pd, pn) in G; the distribution of prices at which a buyer of type i ∈ {x, y} transacts is the same in G∗ and G.

Proposition 1 implies that we can, without any loss in generality, restrict attention to equilibria G in which every seller 
posts prices (pd, pn) ∈ [0, u]2 with pn ≤ pd , and the marginal distribution of lowest prices, Fm , is equal to the marginal 
distribution of night prices, Fn .

3.2. Equilibrium properties of the profit function

In light of Proposition 1, we can replace Fm with Fn in (1). Hence, the profit function V (pd, pn) for a seller posting 
prices (pd, pn) ∈ [0, u]2 with pn ≤ pd can be written as

V (pd, pn) = Vd(pd) + Vn(pn), (5)



210 G. Menzio, N. Trachter / Review of Economic Dynamics 28 (2018) 205–220
where Vd and Vn are respectively defined as

Vd(pd) = [μ1d + μ2d (1 − Fd(pd) + φd(pd)/2)] pd, (6)

and

Vn(pn) = [μ1n + μ2n (1 − Fn(pn) + φn(pn)/2)] pn. (7)

In words, Vd(pd) denotes the seller’s profit from trades that take place during the day. During the day, the seller meets 
μ1d captive buyers and μ2d non-captive buyers. A captive buyer purchases the good from the seller with probability 1. 
A non-captive buyer purchases the good from the seller with probability 1 − Fd(pd) + φd(pd)/2. Similarly, Vn(pn) denotes 
the seller’s profit from trades that take place during the night. It is important to keep in mind that this representation 
of the profit function is valid only for prices (pd, pn) with pn ≤ pd . However, when evaluating the seller’s equilibrium 
profit, we can restrict attention to prices (pd, pn) with pn ≤ pd as established in Proposition 1. Moreover, when evaluating 
an individual seller’s deviations from equilibrium, we can restrict attention to prices (pd, pn) with pn ≤ pd as established 
in (4).

We now want to characterize the equilibrium marginal distributions Fd and Fn in (6) and (7). Unfortunately, we cannot 
simply apply the same arguments as in Burdett and Judd (1983). In Burdett and Judd, every seller posts one price and 
must attain the same profit everywhere on the support of the price distribution. Therefore, solving for the equilibrium 
price distribution only requires solving one equation (i.e., the seller’s equal profit condition) for one unknown (i.e., the price 
distribution). In our model, every seller posts two prices and must attain the same profit everywhere on the support of the 
joint price distribution G . This observation is not enough to solve for the equilibrium price distributions Fd and Fn , as it 
only gives us one equation (i.e., the seller’s equal profit condition) for two unknowns (i.e., the marginal distributions of day 
and night prices).

In order to solve for the equilibrium marginal price distributions, we need more. In what follows, we are going to prove 
that in equilibrium only one of two cases are possible. In the first case, the night profit function Vn is constant over the 
support of the marginal distribution of night prices Fn , and the day profit function Vd is constant over the support of the 
marginal distribution of day prices Fd . In this case, we have two equations for two unknowns and we can solve for the 
equilibrium price distributions. In the second case, the night profit function Vn is strictly increasing in the night price. In 
this case, every seller is going to set the same price during the day and during the night and, hence, Fn = Fd . Thus, we have 
one equation for one unknown and we can solve for the equilibrium price distributions. As we shall see, the relevant case 
depends on parameter values.

The first lemma establishes that, in equilibrium, the marginal price distributions Fd and Fn do not have any mass points. 
The intuition behind this result is the same as in Burdett and Judd (1983). Intuitively, if the equilibrium had a mass point at 
some daytime price p0 > 0, a seller posting p0 could attain strictly higher profits by lowering its price by some arbitrarily 
small amount. In doing so, the seller would enjoy approximately the same profit per sale but it would increase the number 
of sales, as it would undercut the mass of competitors who post the daytime price pd . This process of undercutting cannot 
drive all daytime prices to zero and create an equilibrium with a mass point at p0 = 0 because the seller can always attain 
a strictly positive profit by setting a price of u and by selling only to captive buyers. Since the marginal distributions Fd and 
Fn do not have mass points, they are continuous and this property is inherited by the profit functions Vd and Vn .

Lemma 1. The marginal price distributions Fd and Fn have no mass points, i.e. φd(p) = φn(p) = 0 for all p ∈ [0, u].

Proof. In Appendix A. �
The second lemma establishes that, in equilibrium, the support of the marginal distribution of daytime prices Fd is an 

interval [pd�, pdh], where pdh = u. The intuition behind this result is again the same as in Burdett and Judd (1983). If the 
support of Fd has a gap between the prices p0 and p1, then a seller posting a daytime price of p0 could attain strictly 
greater profits by raising its price to p1. In doing so, the seller would enjoy a higher profit per sale without losing any sales.

Lemma 2. The support of Fd is an interval [pd�, pdh] with pdh = u.

Proof. In Appendix A. �
The third lemma proves that, in equilibrium, the profit function Vn is weakly increasing over the interval [pn�, u], where 

pn� denotes the lower bound on the support of the marginal distribution of night prices Fn . There is a simple intuition 
behind this finding. If Vn is strictly decreasing over some interval [p1, p2], sellers never find it optimal to post night prices 
between p1 and p2. As a result, the marginal distribution of night prices Fn would have a gap between p1 and p2. But, if 
Fn has a gap between p1 and p2, the profit function Vn in (7) is clearly strictly increasing.

Lemma 3. The profit function Vn is weakly increasing over the interval [pn�, u].
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Proof. On the way to a contradiction, suppose that there is an equilibrium G such that Vn(pn) is not weakly increasing 
over the interval [pn�, u]. Then, there must exist prices p0 and p2 such that pn� ≤ p0 < p2 ≤ u and Vn(p0) > Vn(p2). 
If Vn(p0) > Vn(pn) for all pn ∈ (p0, p2], let p1 = p0. If Vn(p0) is not strictly greater than Vn(pn) for all pn ∈ (p0, p2], 
continuity of Vn guarantees existence of at least one p̂ ∈ (p0, p2] and Vn(p̂) = Vn(p0). Let p1 denote the largest of such p̂’s. 
By continuity of Vn , p1 < p2. By construction, Vn(p1) = Vn(p0) > Vn(p2) and Vn(p1) > Vn(p) for all p ∈ (p1, p2].

In equilibrium, every seller maximizes profits and sets a night price pn non-greater than the day price pd . From the 
properties of Vn , it follows that a seller posting a day price pd ≥ p2 must set a night price pn /∈ (p1, p2). A seller posting a 
day price pd ∈ (p1, p2) must set a night price pn ≤ p1. A seller with a day price pd ≤ p1 sets a night price pn ≤ p1. These 
observations imply that the marginal distribution Fn has a gap between p1 and p2, i.e. Fn(p1) = Fn(p2). From (7), it follows 
that Vn(p1) < Vn(p2), which contradicts Vn(p1) = Vn(p0) > Vn(p2). �

The next two propositions show that depending on parameter values, the profit function Vn is either constant over the 
interval [pn�, u] or it is strictly increasing over the interval [pn�, u]. These two propositions are the key to the characteriza-
tion of equilibrium. Proposition 2 shows that if μ1n/μ2n > μ1d/μ2d , Vn is strictly increasing over [pn�, u]. The logic behind 
this result is simple. If Vn is constant over some interval [p0, p1], the marginal distribution Fn must be such that, if a seller 
increases its night price, the number of night trades falls so as to keep the seller’s night profit constant. Moreover, if Vn is 
constant over the interval [p0, p1], we can show that Vd must be constant as well over that interval. Thus, the marginal 
distribution Fd must be such that, if a seller increases its day price, the number of day trades falls so as to keep the seller’s 
day profit constant. In equilibrium, all sellers post prices pn ≤ pd and, hence, Fd must first order stochastically dominate Fn . 
Given the shape of Fn and Fd that keep night and day profits constant, this is only possible if μ1n/μ2n < μ1d/μ2d . Hence, 
if μ1n/μ2n > μ1d/μ2d , Vn must be strictly increasing everywhere.

Proposition 2. If μ1n/μ2n > μ1d/μ2d, Vn is strictly increasing over the interval [pn�, u].

Proof. Suppose that Vn is such that there exist prices p̂0 and p̂1 such that pn� ≤ p̂0 < p̂1 ≤ u and Vn(p̂0) = Vn(p̂1) = V ∗
n . 

From Lemma 3, it follows that Vn(pn) = V ∗
n for all pn ∈ [p̂0, p̂1]. Let [p0, p1] denote the largest interval in [pn�, u] such 

that [p̂0, p̂1] ⊂ [p0, p1] and Vn(pn) = V ∗
n for all pn ∈ [p0, p1]. By construction of [p0, p1], it follows that Vn(pn) > V ∗

n for all 
p > p1 and that Vn(pn) < V ∗

n for all pn < p0.
In equilibrium, every seller maximizes profits and sets a night price pn non-greater than the day price pd . From this 

observation and from the properties of Vn , the following holds. A seller posting a day price pd < p0 must be setting a night 
price pn < p0. A seller posting a day price pd ∈ [p0, p1] must be setting a night price pn such that p0 ≤ pn ≤ pd < p1. 
A seller posting a day price pd > p1 must be setting a night price pn > p1. Therefore, Fn(p1) = Fd(p1) and Fn(p) ≥ Fd(p)

for all p ∈ [p0, p1]. Moreover, since p1 > pn� , Fn(p1) > 0. And, since Fd(p1) = Fn(p1), p1 > pd� .
By construction, Vn is constant for all pn ∈ [max{pd�, p0}, p1]. Since Vn is constant for all pn ∈ [max{pd�, p0}, p1] and 

all sellers with a day price pd ∈ [p0, p1] set a night price pn ∈ [p0, p1] and they all make the same overall profit, it follows 
that Vd is constant for all pd ∈ [max{pd�, p0}, p1]. Solving Vn(p) = Vn(p1) and Vd(p) = Vd(p1) for p ∈ [max{pd�, p0}, p1], 
we find

Fn(pn) = Fn(p1) −
[
μ1n

μ2n
+ (1 − Fn(p1))

]
p1 − pn

pn
,

Fd(pd) = Fd(p1) −
[
μ1d

μ2d
+ (1 − Fd(p1))

]
p1 − pd

pd
.

(8)

Using the fact that Fn(p1) = Fd(p1), we can write the difference Fn(p) − Fd(p)

Fn(p) − Fd(p) =
(

μ1d

μ2d
− μ1n

μ2n

)
p1 − p

p
. (9)

In equilibrium, the above difference must be non-negative as all sellers post prices (pd, pn) with pn ≤ pd . Clearly, (9) is 
non-negative only if μ1n/μ2n ≤ μ1d/μ2d . If μ1n/μ2n > μ1d/μ2d , there exist no prices p̂0 and p̂1 such that pn� ≤ p̂0 <

p̂1 ≤ u and Vn(p̂0) = Vn(p̂1). Hence, Vn is strictly increasing for all pn ∈ [pn�, u]. �
The next proposition shows that if μ1n/μ2n ≤ μ1d/μ2d , Vn is constant over the interval [pn�, u]. Let us give the reader 

the gist of the proof. If Vn is strictly increasing over some interval (p0, p1), all sellers with a day price of pd ∈ (p0, p1)

must be setting a night price pn equal to pd , while sellers with a day price pd > p1 must be setting night prices pn > p1
and sellers with a day price pd < p0 must be setting a night price pn < p0. This implies that Fn(p) and Fd(p) are equal 
for all p ∈ [p0, p1]. Moreover, sellers are indifferent between posting prices (p0, p0) and (p1, p1). Hence, the marginal price 
distributions Fn and Fd must be such that, if the seller increases its prices from (p0, p0) to (p1, p1), the loss in trades 
must exactly make up for the increase in profit per trade. Given such marginal price distributions, we can compute the 
seller’s profit Vn and show that it is increasing if and only if μ1n/μ2n > μ1d/μ2d . Hence, if μ1n/μ2n ≤ μ1d/μ2d , Vn must 
be constant over the interval [pn�, u].
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Proposition 3. If μ1n/μ2n ≤ μ1d/μ2d, Vn is constant over the interval [pn�, u].

Proof. Suppose Vn is not constant over [pn�, u]. Since Vn is continuous, weakly increasing and not everywhere constant, 
there exist prices p0 and p1, with pn� < p0 < p1 < u, such that Vn(p) < Vn(p0) for all p ∈ [pn�, p0) and Vn(p) < Vn(p1)

for all p ∈ [pn�, p1). A seller posting a day price pd < p0 must be setting a night price pn ≤ pd < p0. A seller posting a 
day price pd ∈ [p0, p1) must be setting a night price pn ∈ [p0, p1). A seller posting a day price pd ≥ p1 must be setting 
a night price pn ∈ [p1, pd]. From these observations, it follows that Fn(p0) = Fd(p0) and Fn(p1) = Fd(p1). Since p0 > pn� , 
Fn(p0) > 0. Since Fd(p0) = Fn(p0), p0 > pd� . Therefore, p1 > p0 > pd� .

Note that, from the properties of Vn , it follows that a seller posting a day price pd = p0 must be setting a night price 
pn = p0. Similarly, a seller posting a day price pd = p1 must be setting a night price pn = p1. Since both p0 and p1 are on 
the support of Fd , the price pairs (p0, p0) and (p1, p1) maximize the seller’s profits. That is,

[μ1d + μ2d(1 − Fd(p0)) + μ1n + μ2n(1 − Fn(p0))] p0

= [μ1d + μ2d(1 − Fd(p1)) + μ1n + μ2n(1 − Fn(p1))] p1.
(10)

Using the fact that Fd(p0) = Fn(p0) and Fd(p1) = Fn(p1), we can solve the above equation for 1 − Fn(p0) and find

1 − Fn(p0) =
[
μ1n + μ1d

μ2n + μ2d
+ 1 − Fn(p1)

]
p1

p0
. (11)

Since Vn is such that Vn(p0) < Vn(p1), we have

[μ1n + μ2n(1 − Fn(p0))] p0 < [μ1n + μ2n(1 − Fn(p1))] p1. (12)

Substituting 1 − Fn(p0) with (11), we can rewrite (12) as(
μ1n − μ2n

μ1n + μ1d

μ2n + μ2d

)
(p1 − p0) > 0. (13)

The above inequality is satisfied if and only if μ1n/μ2n > μ1d/μ2d . Therefore, if μ1n/μ2n ≤ μ1d/μ2d , Vn must be constant 
for all p ∈ [pn�, u]. �
3.3. Equilibrium with price dispersion across and within stores

The properties of equilibrium depend critically on whether the ratio of captive to non-captive buyers who can shop both 
during the day and during the night, μ1n/μ2n , is smaller or greater than the ratio of captive to non-captive buyers who can 
shop only during the day, μ1d/μ2d . The relative magnitude of these two ratios is a complicated function of the underlying 
parameters of the model. However, with a little bit of algebra, it is possible to show6 that μ1n/μ2n is smaller (greater) than 
μ1d/μ2d if and only if (αx − αy)(βx − βy) is positive (negative). That is, the ratio of captive to non-captive buyers who can 
shop at all times is smaller than the ratio of captive to non-captive buyers who can only shop during the day if and only if 
buyers of type x—who by assumption are more likely to be captive—are also more likely to have to shop during the day.

In this subsection, we solve for the equilibrium price distributions when parameters are such that

(αx − αy)(βx − βy) > 0. (14)

As established in Proposition 3, any equilibrium under condition (14) is such that the night profit function Vn(pn) is equal 
to a constant V ∗

n for all pn ∈ [pn�, u]. Since in any equilibrium sellers attain the same profit from night trades and the same 
total profit, sellers must also enjoy the same profit from day trades. Since in any equilibrium there are sellers posting every 
day price pd ∈ [pd�, u], as established in Lemma 2, the day profit function Vd(pd) must be equal to a constant V ∗

d for all 
pd ∈ [pd�, u].

Using the above observations, we can now find the marginal price distributions of night and day prices in any equilib-
rium. Since Vn(u) = V ∗

n and Vd(u) = V ∗
d , any equilibrium is such that V ∗

n = μ1nu and V ∗
d = μ1du. Since Vn(pn) = μ1nu for 

all pn ∈ [pn�, u] and Vd(pd) = μ1du for all pd ∈ [pd�, u], any equilibrium is such that the marginal price distributions Fn and 
Fd are respectively given by

Fn(pn) = 1 − μ1n

μ2n

u − pn

pn
, ∀pn ∈ [pn�, u], (15)

and

Fd(pd) = 1 − μ1d

μ2d

u − pd

pd
, ∀pd ∈ [pd�, u]. (16)

6 We are grateful to a referee for pointing this equivalence out.
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Fig. 1. Equilibrium profits.

The lower bound on the support of the distribution of night prices is the solution to Fn(pn) = 0. Similarly, the lower bound 
on the support of the distribution of day prices is the solution to Fd(pd) = 0. Solving these two equations gives

pn� = μ1n

μ1n + μ2n
u, pd� = μ1d

μ1d + μ2d
u. (17)

It is immediate to verify that the marginal price distributions Fn and Fd in (15) and (16) are proper cumulative distribution 
functions.

We have thus characterized the marginal distribution of night and day prices in any equilibrium given the parametric 
restriction (14). Now, we have to verify that an equilibrium actually exists. To this aim, we need to show that there exists 
a joint price distribution G such that: (a) the support of G is in the region (pd, pn) ∈ [0, u]2 with pn ≤ pd; (b) everywhere 
on the support of G the profits of the seller are maximized; (c) the joint price distribution G generates the marginal price 
distributions Fn and Fd in (15) and (16).

First, we identify the subset of the region (pd, pn) ∈ [0, u]2 with pn ≤ pd in which the profits of the seller are maximized. 
To this aim, notice that, if a seller posts any prices (pd, pn) ∈ [pd�, u] ×[pn�, u] with pn ≤ pd , he attains a profit of V ∗

d + V ∗
n =

(μ1d + μ1n)u. If a seller posts prices (pd, pn) such that pd ∈ [pd�, u], pn ∈ [0, pn�) and pn ≤ pd , he attains a profit of strictly 
smaller than V ∗

d + V ∗
n . This is because Vd(pd) is equal to V ∗

d and Vn(pn) is equal to (μ1n + μ2n)pn which is strictly smaller 
than V ∗

n for all pn < pn� . If a seller posts prices (pd, pn) such that pd ∈ [0, pd�), pn ∈ [pn�, u] and pn ≤ pd , he attains a profit 
strictly smaller than V ∗

d + V ∗
n . This is because Vn(pn) is equal to V ∗

n and Vd(pd) is equal to (μ1d + μ2d)pd which is strictly 
smaller than V ∗

d for all pd < pd� . Similarly, if a seller posts prices (pd, pn) such that pd ∈ [0, pd�), pn ∈ [0, pn�) and pn ≤ pd , 
he attains a profit strictly smaller than V ∗

d + V ∗
n . Moreover, (4) implies that a seller attains the same profit by setting prices 

(pd, pn) ∈ [0, u]2 with pn > pd as by posting the prices (pd, pd). These observations imply that the seller’s maximum profit 
is V ∗

d + V ∗
n and the subset of the region (pd, pn) ∈ [0, u]2 with pn ≤ pd where the maximum profit is attained is given by 

(pd, pn) ∈ [pd�, u] × [pn�, u] with pn ≤ pd . This subset is illustrated in Fig. 1.
Next, we show that there exists a joint price distribution G that has support in the area (pd, pn) ∈ [pd�, u] × [pn�, u]

with pn ≤ pd and that generates the marginal distributions Fn and Fd in (15) and (16). To this aim, consider a putative 
equilibrium in which the fraction Fn(pn) of sellers posting night prices lower than pn is given by (15) and in which each 
seller who posts a night price of pn sets a day price of g(pn), with

g(pn) =
[
μ1n

μ2n
u +

(
μ1d

μ2d
− μ1n

μ2n

)
pn

]−1 μ1d

μ2d
upn. (18)

The function g(pn) is illustrated in Fig. 1. The function g(pn) is strictly increasing in pn , takes the value pd� for pn = pn� , and 
takes the value u for pn = u. Moreover, given the parametric condition (14), g(pn) − pn ≥ 0 for all pn ∈ [pn�, u]. Therefore, 
the joint price distribution G associated with the putative equilibrium has support in the region (pd, pn) ∈ [pd�, u] ×[pn�, u]
with pn ≤ pd . In the putative equilibrium, the marginal distribution of night prices Fn is given by (15). Since g(pn) is a 
strictly increasing function, the marginal distribution of day prices Fd(pd) is given by Fn(g−1(pd)), which is easy to show 
is exactly the same as (16). This establishes that the joint price distribution G associated with the putative equilibrium 
generates the marginal price distribution (15) and (16).
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We have thus established that there exists an equilibrium and that any equilibrium is such that the marginal distribution 
of night prices Fn is given by (15), the marginal distribution of day prices Fd is given by (16) and every seller posts 
lower prices at night than during the day. There may be multiple equilibria. Yet, any equilibrium has two notable features. 
First, the equilibrium features dispersion in the average price of different sellers. To see this, note that the equilibrium 
features dispersion in the price of different sellers in any period, as the marginal distributions of day and night prices are 
non-degenerate. Then, note that the dispersion of prices posted by different sellers in any period does not average out 
across periods, as a seller’s night price is non-greater than his day price. For instance, any seller with a day price of pd�

has an average price non-greater than pd� , while any seller with a night price of u has an average price of u > pd� . Second, 
the equilibrium features price dispersion within sellers. To see this, notice that the marginal distribution of day prices first 
order stochastically dominates the distribution of night prices. Hence, there is a positive measure of sellers posting a night 
price strictly smaller than their day price.

Overall, under condition (14), any equilibrium features price dispersion across and within stores. There is a clear intuition 
behind this result. The equilibrium features dispersion in the average price of different sellers for the same reason as in 
Burdett and Judd (1983). In each period, sellers have an incentive to undercut any market-wide price to steal customers 
from their competitors, but undercutting cannot drive the market-wide price to marginal cost because sellers always have 
the option of raising the price and sell only to captive customers. Since the dispersion in the price of different sellers 
cannot perfectly average out across periods, the equilibrium features dispersion in the average price of different sellers. The 
equilibrium features price dispersion within sellers because sellers have an incentive to post a lower price during the night 
than during the day in order to discriminate between buyers of type x and buyers of type y. By assumption, buyers of 
type x are more likely to be captive customers than buyers of type y, i.e. αx > αy . Hence, a seller faces less competition 
for buyers of type x than for buyers of type y and has an incentive to charge them different prices. Under condition (14), 
buyers of type x are also more likely to have to shop during the day, i.e. βx > βy . Hence, a seller has the opportunity to 
charge a higher price to buyers of type x than to buyers of type y by raising his day price above the night price.

The above analysis is summarized in Proposition 4.

Proposition 4. If (αx −αy)(βx −βy) > 0, there exists at least one equilibrium. In any equilibrium, the joint price distribution G is such 
that each seller posts prices (pd, pn) ∈ [0, u]2 with pn ≤ pd, the marginal distribution Fd of day prices is given by (16), the marginal 
distribution Fn of night prices is given by (15). In any equilibrium, there is price dispersion across and within sellers.

Under condition (14), all equilibria have the same marginal distributions of day and night prices, but differ with respect 
to the joint price distributions. For some qualitative questions—such as whether there is price dispersion across sellers 
and within sellers—the answer is independent of the shape of the joint price distribution and, hence, multiplicity is not 
an issue. For more quantitative questions—such as breaking down the variance of prices into an across-seller component 
and a within-seller component—the answer does depend on the shape of the joint price distribution and, hence, will vary 
depending on equilibrium selection. Luckily, it is easy to show that only one equilibrium is robust to a small perturbation 
of the environment.

Above, we showed that there always exist an equilibrium in which sellers post prices (g(pn), pn), where the fraction 
Fn(pn) of sellers with a night price non-greater than pn is given by (15) and g(pn) is a strictly increasing function given 
by (18). This is the only equilibrium where a seller’s day price is strictly increasing in his night price and, hence, Fn(pn) =
Fd(g(pn)). In Appendix B, we show that this is the unique equilibrium robust to the introduction of sellers’ heterogeneity in 
the cost of production. Specifically, we consider a version of the model in which the distribution across sellers with respect 
to the cost of producing the good is uniform with support [0, c]. For any c ∈ (0, u), the unique equilibrium of this version 
of the model is such that a seller with a higher cost of production always posts a higher day price and a higher night price, 
i.e. Fn(pn(c); c) = Fd(pd(c); c) = c/c. For c → 0, the equilibrium marginal price distributions Fn and Fd converge to (15) and 
(16) and the seller’s day price as a function of his night price converges to the g(pn) in (18).

3.4. Equilibrium without price dispersion within stores

In this subsection, we solve for the equilibrium price distributions when parameters are such that μ1n/μ2n > μ1d/μ2d
or, equivalently,

(αx − αy)(βx − βy) < 0. (19)

As established in Proposition 2, under the parametric restriction (19) any equilibrium is such that the night profit function 
Vn is strictly increasing for all pn ∈ [pn�, u]. Since sellers maximize profits and post prices (pd, pn) with pn ≤ pd , in any 
equilibrium a seller with a day price of pd must be setting a night price pn = pd . First, this observation implies that in any 
equilibrium the marginal distributions of day and night prices are the same, i.e. Fd(p) = Fn(p) for all p ∈ [pd�, u]. Second, 
the observation implies that in any equilibrium the seller’s overall profit Vd(p) + Vn(p) must attain the same value V ∗ for 
all p ∈ [pd�, u].

We can now recover the equilibrium marginal distribution of day and night prices. Since Vd(u) + Vn(u) = V ∗ , it follows 
that in any equilibrium the constant V ∗ is given by (μ1d + μ1n)u. Since Vd(p) + Vn(p) = (μ1d + μ1n)u and Fd(p) = Fn(p)

for all p ∈ [pd�, u], it follows that in any equilibrium the marginal distributions of day and night prices are given by
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Fd(p) = Fn(p) = 1 − μ1d + μ1n

μ2d + μ2n

u − p

p
, ∀p ∈ [pd�, u]. (20)

The lower bound on the support of the marginal distribution of day prices is the solutions to the equations Fd(pd) = 0. 
Similarly, the lower bound on the support of the marginal distribution of night prices is the solution to Fn(pn) = 0, which 
obviously is the same as the equation Fd(pn) = 0. Solving these equations, we find that pd� and pn� are given by

pd� = pn� = μ1d + μ1n

μ1d + μ2d + μ1n + μ2n
u. (21)

It is straightforward to verify that the marginal price distributions Fd and Fn in (20) are proper cumulative distribution 
functions.

Under the parametric restriction (19), there exists a unique candidate equilibrium. In this candidate equilibrium, every 
seller posts prices (pd, pn) with pn = pd , the fraction Fd(pd) of sellers posting a day price non-greater than pd is given by 
(20), and the fraction Fn(pn) of sellers posting a night price non-greater than pn is also given by (20). Clearly, the candidate 
equilibrium is such that every seller posts a night price non-greater than his day price. It is also clear that the candidate 
equilibrium generates the desired marginal distributions of day and night prices. Therefore, to make sure that the candidate 
equilibrium is indeed an equilibrium, we only have to check that all prices (p, p) with p ∈ [pd�, u] maximize the profit of 
the seller.

A seller posting prices (p, p) with p ∈ [pd�, u] attains a profit equal to V ∗ . Now, consider a seller posting prices (pd, pn)

with pd� < pn < pd ≤ u. This seller attains a profit strictly smaller than V ∗ , as one can easily verify that Vn is strictly 
increasing in pn ∈ [pd�, u] and, hence, Vd(pd) + Vn(pn) is strictly smaller than Vd(pd) + Vn(pd) which, in turn, is equal 
to V ∗ . Next, consider a seller posting prices (pd, pn) with 0 ≤ pn < pd� ≤ pd ≤ u. This seller attains a profit strictly smaller 
than V ∗ , as (6) implies that Vn(pn) < Vn(pd�) and, hence, Vd(pd) + Vn(pn) is strictly smaller than Vd(pd) + Vn(pd�) which, 
in turn, is smaller than V ∗ . Consider a seller posting prices (pd, pn) with 0 ≤ pn ≤ pd < pd� . This seller attains a profit 
strictly smaller than V ∗ , as (6) implies that Vn(pn) < Vn(pd�) and (5) implies that Vd(pd) < V (pd�). Hence, Vd(pd) + Vn(pn)

is strictly smaller than Vd(pd�) + Vn(pd�) which, in turn, is equal to V ∗ . Finally, (4) implies that a seller attains the same 
profit by setting prices (pd, pn) ∈ [0, u]2 with pn > pd as by posting the prices (pd, pd). These observations allow us to 
conclude that the maximum profit is V ∗ and that all prices (p, p) with p ∈ [pd�, u] attains this maximum.

We have thus established that, under condition (19), there exists a unique equilibrium, in which every seller posts 
prices (pd, pn) with pn = pd , the fraction Fd(pd) of sellers posting a day price non-greater than pd is given by (20) and 
the fraction Fn(pn) of sellers posting a night price non-greater than pn is also given by (20). The equilibrium has two 
notable features. First, the equilibrium features dispersion in the average price of different sellers. To see this, note that the 
marginal distribution of day prices is non-degenerate. Since every seller posts the same price during the night as during the 
day, the marginal distribution of average prices is the same as the marginal distribution of day prices and, hence, is also 
non-degenerate. Second, the equilibrium does not feature price dispersion within sellers, as every individual seller sets the 
same price during the night as during the day. To understand this property of equilibrium, notice that, under condition (19), 
buyers of type x are more likely to be captive and are more likely to be able to shop both during the day and during the 
night. Since buyers of type x are more likely to be captive, sellers would like to charge them a higher price. However, since 
buyers of type x are more likely to be able to shop at any time, sellers cannot successfully use time-variation in prices to 
discriminate between the two types of buyers. Indeed, if they were to post a higher price during the day than during the 
night in an attempt to discriminate between the two types of buyers, it would be the buyers of type x who take advantage 
of the night price not the buyers of type y.

The above analysis is summarized in Proposition 5.

Proposition 5. If (αx − αy)(βx − βy) < 0, there exists a unique equilibrium. The equilibrium is such that each seller posts prices 
(pd, pn) ∈ [0, u]2 with pn = pd, the marginal distribution Fd of day prices is given by (20) and the marginal distribution Fn of night 
prices is given by (20). The equilibrium features price dispersion across sellers, but no dispersion of prices within sellers.

Propositions 4 and 5 provide a characterization of equilibrium when (αx − αy)(βx − βy) 	= 0. For completeness, we now 
consider the case (αx − αy)(βx − βy) = 0. When (αx − αy)(βx − βy) = 0, μ1n/μ2n = μ1d/μ2d and Proposition 3 implies 
that the profit function Vn is constant. Hence, any equilibrium G is such that the marginal distribution Fn of night prices 
is given by (15) and the marginal distribution Fd of day prices is given by (16). Moreover, since μ1n/μ2n = μ1d/μ2d , the 
marginal distribution Fn of night prices is equal to the marginal distribution Fd of day prices. Since every seller posts prices 
(pd, pn) with pn ≤ pd and Fn = Fd , the equilibrium G is such that every seller posts the same price during the day as 
during the night. Thus, when (αx − αy)(βx − βy) = 0, the equilibrium features price dispersion across sellers but no price 
dispersion within sellers, just as in the case of (αx − αy)(βx − βy) < 0. However, unlike the case of (αx − αy)(βx − βy) < 0, 
the reason for the lack of price dispersion within sellers is different. If αx = αy , there is no price dispersion within sellers 
because buyers of type x and y are in contact with the same number of sellers and, hence, sellers have no incentive to price 
discriminate. If βx = βy , there is no price dispersion within sellers because buyers of type x and y are equally likely to have 
a flexible shopping schedule and, hence, there is no way to discriminate them by posting different prices at different times.
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3.5. Comparative statics

Proposition 4 and 5 imply that the equilibrium features price dispersion across and within sellers if and only if (αx −
αy)(βx − βy) > 0. It is natural to wonder how the equilibrium outcomes change when we vary the two features of the 
environment that are necessary and sufficient to the emergence of price dispersion across and within sellers. Namely, the 
difference �α = αx − αy > 0 in the probability that a buyer of type x and a buyer of type y are captive to one seller, and 
the difference �β = βx − βy > 0 in the probability that a buyer of type x and a buyer of type y have to shop during the 
day.

To carry out comparative statics with respect to �α and �β , it is convenient to express the ratio μ1d/μ2d of captive 
to non-captive buyers who can shop only during the day and the ratio μ1n/μ2n of captive to non-captive buyers who can 
shop both during the day and during the night as

μ1d

μ2d
= αxβx + (θy/θx) (αx − �α) (βx − �β)

2(1 − αx)βx + 2(θy/θx)(1 − αx + �α)(βx − �β)
, (22)

and

μ1n

μ2n
= αx(1 − βx) + (θy/θx) (αx − �α) (1 − βx + �β)

2(1 − αx)(1 − βx) + 2(θy/θx)(1 − αx + �α)(1 − βx + �β)
. (23)

First, consider the effect of an increase in �α . From (22) and (23), it follows that an increase in �α lowers both μ1d/μ2d
and μ1n/μ2n . It then follows from (16) that an increase in �α causes a decline in daytime prices, as the equilibrium 
marginal distribution Fd falls in the sense of first-order stochastic dominance. Similarly, it follows from (15) that an increase 
in �α causes a decline in nighttime prices, as the equilibrium marginal distribution Fn falls in the sense of first-order 
stochastic dominance. Moreover, we can show that an increase in �α increases the difference μ1d/μ2d − μ1n/μ2n . It then 
follows from (15) and (16) that the difference between the marginal distribution of day prices and the marginal distribution 
of night prices increases. These findings are intuitive. If buyers of type y become better at shopping around, sellers face 
more competition and prices fall both during the day and during the night. However, since buyers of type y are more likely 
than buyers of type x to be able to shop at night, night-time prices fall more than day-time prices.

What do the changes to the equilibrium price distributions described above imply about price dispersion? A rudimentary 
measure of overall price dispersion is the length u − pn� of the support of the overall price distribution Ft(p) = (Fd(p) +
Fn(p))/2. By this measure, an increase in �α increases overall price dispersion as the lowest price pn� observed in the 
market falls. A rudimentary measure of within-seller price dispersion is the length pd�− pn� , which is the difference between 
the lengths of the support of the distribution of day and night prices (and also the difference between the day and the night 
price posted by the cheapest seller in the market). By this measure, an increase in �α leads to an increase in within-seller 
price dispersion, as pn� falls more than pd� .

Now, consider the effect of an increase in �β . From (22) and (23), it follows that an increase in �β increases μ1d/μ2d
and lowers μ1n/μ2n . It then follows from (16) that an increase in �β causes an increase in daytime prices, as the equilib-
rium marginal distribution Fd rises in the sense of first-order stochastic dominance. In contrast, an increase in �β causes a 
decline in nighttime prices, as the equilibrium marginal distribution Fn falls in the sense of first-order stochastic dominance. 
From these observations, it follows that an increase in �β increases the difference between the marginal distribution of day 
prices and the marginal distribution of night prices increases. These findings are also intuitive. If buyers of type y become 
better at shopping at different times of day, sellers can achieve more precise discrimination between buyers of type y and 
buyers of type x by posting different prices during the day and during the night. For this reason, sellers lower the night 
price and raise the day price.

Having characterized the effect of an increase in �β on the equilibrium price distributions, we can now look at its effect 
on price dispersion. An increase in �β leads to an increase in overall price dispersion measured as the difference u − pn�

between the highest and the lowest price observed in the market. Moreover, an increase in �β leads to an increase in 
within seller price dispersion measured as the difference pd� − pn� between dispersion in night prices and dispersion in day 
prices.

Finally, it is useful to examine the behavior of the equilibrium when �α and �β go to zero. In the limit for either 
�α → 0 or �β → 0, the difference between the ratios μ1d/μ2d and μ1n/μ2n converges to zero. Using this observation, 
we can then show that the distance between the equilibrium distribution of day prices and the equilibrium distribution of 
night prices goes to zero, i.e. lim Fn(p) − Fd(p) = 0. Moreover, we can show that overall price dispersion (as measured by 
u = pn�) converges to a strictly positive number, while within seller price dispersion (as measured by pd� − pn�) converges 
to zero, i.e. lim u − pn� > 0 and lim pn� − pd� = 0. These findings reveal that the equilibrium features both price dispersion 
across and within sellers if and only if �α > 0 and �β > 0, and that, when either �α or �β go to zero, the within seller 
component of price dispersion vanishes.

The model can be easily estimated using data on price dispersion. In fact, the model has a unique equilibrium and, 
as shown above, its fundamentals affect in a natural way the extent of overall price dispersion and the extent of price 
dispersion within sellers. The model can be tested using its predictions for the extent of dispersion in prices paid by 
different households and in the composition of such price dispersion. Indeed, the model has prediction with respect to how 
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Fig. 2. Equilibrium price distributions.

much of the variance in prices paid by different households is accounted for by differences in the average price of the store 
where households shop, how much is accounted for by differences in the discounts enjoyed by households at those stores, 
and in the covariance between the two components.

While a careful estimation and validation of the model is outside the scope of this paper, it is useful to present a numer-
ical example to show that the model has the ability to quantitatively account for the observed extent of price dispersion 
across and within sellers. Fig. 2 illustrates the properties of the unique robust equilibrium—i.e. the one in which sellers post 
prices (g(pn), pn) with g(pn) given in (18)—when the parameter are given values αx = 0.5, βx = 0.9, �α = 0.4, �β = 0.8, 
θy/θx = 1 and u = 1. The black dashed line is the marginal distribution of day prices Fd . The gray dashed line is the marginal 
distribution of night prices Fn . As known from (15) and (16), the marginal distribution of day prices first order stochasti-
cally dominates the marginal distribution of night prices. The black solid line is the overall price distribution, Ft . Given the 
equilibrium joint price distribution, we can decompose the overall variance of prices into an across-seller component and 
a within-seller component. We find that the overall standard deviation of prices is 23%, the across store variance is 56% 
of the overall variance, and the within store variance is 44%. These numbers are very close to those found by Kaplan and 
Menzio (2015), which shows that our simple model has the potential to match some of the key empirical facts about price 
dispersion.

Naturally, ours is not the only possible theory of price dispersion across and within stores, even though it builds on 
the leading theory of price dispersion across stores and on the leading theory of temporary sales (which, as documented 
in Nakamura and Steinsson, 2008 and Klenow and Kryvtsov, 2008, are the main source of within-seller price dispersion). 
Price dispersion across stores may arise because each seller is a pure monopolist over some segment of the population and 
different sellers face different marginal costs or different elasticities of demand. Similarly, price dispersion within stores 
may arise because each seller faces different marginal costs or different elasticities of demand at different moments in 
time. Given the lack of data on seller-and-good specific cost and demand functions, this explanation is possible but also 
non-falsifiable.7

Price dispersion across and within stores may also arise because sellers randomly reset the price several times per 
quarter. In Burdett and Judd (1983), each seller attains the maximum profit by posting any price on the support of the 
distribution. Then, an individual seller also attains the maximum same profit by posting different prices at different points 
in time, as long as each one of these prices is on the support of the distribution. We find this explanation unappealing. The 
introduction of any arbitrarily small amount of heterogeneity in the seller’s cost purifies the equilibrium so that, for each 
type of seller, there is a unique profit-maximizing price.8

Another explanation for price dispersion across and within stores is that sellers face a menu cost to change their nominal 
price (see, e.g., Sheshinski and Weiss, 1977; Benabou, 1988 or Burdett and Menzio, 2017). Because of the menu cost, each 
seller will occasionally change his nominal price and, thus, there will be price dispersion within stores and, as long as 
repricing is not perfectly correlated across sellers, there will also be price dispersion in the average price of different stores. 
This explanation is unlikely to be relevant, as we observe a great deal of price dispersion across and within stores even 

7 Stigler (1961)—in reference to the dispersion of prices for the same car across different dealerships—writes: “Some automobile dealers might perform 
more service, or carry a larger range of varieties in stock, and a portion of the observed dispersion is presumably attributable to such differences. But it 
would be metaphysical, and fruitless, to assert that all dispersion is due to heterogeneity.”

8 Bontemps et al. (2000) formalize the purification argument in the context of Burdett and Mortensen (1998), which is the labor market analogue of the 
product market model of Burdett and Judd (1983).
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when inflation is very low (such as in the US during the 2000s). Moreover, the within-seller price dispersion generated by 
menu costs does not follow the typical V-pattern of temporary sales.

Price dispersion across and within stores may be due to the management of perishable goods (see, e.g., Lazear, 1986). 
For instance, different sellers may carry on their shelves products with different expiration dates. Sellers whose products are 
about to expire will post lower prices and, once their products are replaced, they will increase their prices. This explanation 
is unlikely to account for all of price dispersion. Indeed, Kaplan et al. (2016) document that price dispersion within and 
across stores is large not only for low-durability but also for high-durability goods. A related explanation is offered by 
Aguirregabiria (1999) who shows that sellers find it optimal to vary their price as their inventory evolves over time. Yet, it 
seems difficult to explain the V-pattern of temporary sales with changes in inventories.

4. Conclusions

Kaplan and Menzio (2015) document that approximately half of the overall price dispersion in the US retail market is due 
to dispersion across sellers and half to dispersion within sellers. In this paper, we developed a search-theoretic model of the 
retail market that generates, as equilibrium outcomes, both price dispersion across and within sellers. Price dispersion across 
sellers obtains because, as in Burdett and Judd (1983), buyers are heterogeneous in their ability to shop at different stores. 
Price dispersion within sellers obtains because, as in Conlisk et al. (1984), buyers are heterogeneous with respect to their 
ability to shop at different times and those who need to shop at a particular time have a higher reservation price. Overall, 
our model generates price dispersion across and within stores by combining in a unified and parsimonious framework the 
insights from the search theory of price dispersion and of the intertemporal price discrimination theory of sales. Yet, the 
techniques for solving the equilibrium of our model are novel.

The next step in our research agenda is to integrate the dynamic single-product model developed in this paper with the 
static multi-product model developed in Kaplan et al. (2016) in order to build a unified framework that can simultaneously 
generate dispersion in the average price of different stores (the store component of price dispersion), the average price of 
the good at a particular store relative to the average price of the store (the store-good component of price dispersion), and 
the price of the good at a particular store relative to its average price (the transaction component of price dispersion). Our 
single-product model does not distinguish between the store and the store-good components of price dispersion. The static 
model of Kaplan et al. does not generate any price dispersion through the transaction component. Yet, Kaplan and Menzio
(2015) convincingly document that all three components of price dispersion are empirically relevant. After having developed 
such a unified framework, we will be in the position to estimate the model using the econometric techniques developed by 
Hong and Shum (2006) and Moraga-Gonzales and Wildenbeest (2008). We would also be able to test the many predictions 
of the model with respect to the extent and sources of dispersion in price indexes across different households.

Appendix A. Proofs of Lemma 1 and 2

Proof of Lemma 1. We begin by establishing that Fd has no mass points. On the way to a contradiction, suppose that 
there exists an equilibrium G in which Fd has a mass point at p0 ∈ (0, u]. Consider any seller posting prices (p0, pn) with 
pn < p0. From (5), it follows that this seller can attain a strictly higher profit by posting the prices (p0 − ε, pn) for some 
ε > 0 sufficiently small. Consider any seller posting prices (p0, pn) with pn = p0. From (5), it follows that this seller can 
attain a strictly higher profit by choosing the prices (p0 − ε, p0 − ε) for some ε > 0 sufficiently small. From Proposition 1, 
it follows that no seller posts prices (p0, pn) with pn > p0. Overall, any seller who in equilibrium posts a day price of p0 is 
not maximizing profits. Hence, G is not an equilibrium. Now, suppose that there exists an equilibrium G in which Fd has 
a mass point at p0 = 0. Consider a seller posting prices (p0, pn) with pn = p0 = 0. The profit of the seller is 0. From (5), it 
follows that this seller can attain a strictly greater profit by posting prices (u, u) and selling only to captive buyers. From 
Proposition 1, it follows that there are no sellers posting prices (p0, pn) with pn > p0. Overall, any seller posting a day price 
of p0 is not maximizing profits. Hence, G is not an equilibrium. This completes the proof that Fd does not have mass points. 
The proof that Fn has no mass points is analogous. �
Proof of Lemma 2. We first establish that the support of Fd is an interval [pd�, pdh]. On the way to a contradiction, let 
us suppose that there exists an equilibrium G such that the support of Fd has a gap between p0 and p1 where pd� <

p0 < p1 < u and p0 and p1 are prices on the support of Fd . Since Fd(p1) = Fd(p0), any seller posting prices (p0, pn) with 
pn ≤ p0 can attain a strictly higher profit by choosing the prices (p1, pn) instead. From Proposition 1, it follows that there 
are no sellers posting prices (p0, pn) with pn > p0. Overall, any seller posting a day price p0 is not maximizing profits. 
By continuity of Vd and Vn , any seller posting a day price in a left neighborhood of p0 is also not maximizing profits. 
Therefore, p0 cannot be on the support of Fd . The proof of pdh = u is analogous. �
Appendix B. Equilibrium refinement

In this appendix, we consider a version of the model in which sellers are heterogeneous with respect to the cost c of 
producing the good. We show that under the parametric restriction (14), this version of the model admits a unique interior 
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equilibrium in which the seller’s rank in the cost distribution is the same as the seller’s rank in the distribution of day 
prices and as the seller’s rank in the distribution of night prices. We show that, in the limit as cost heterogeneity goes to 
zero, the unique equilibrium of this version of the model converges to the equilibrium of the model without heterogeneity 
considered in Section 3.3, where each seller posting a night price of pn posts a day price of g(pn), with g(pn) given by (18), 
and the fraction of sellers posting a night price non-greater than pn is Fn(pn), with Fn(pn) given by (15).

Let H(c) denote the measure of sellers with a production cost non-greater than c. For the sake of exposition, we assume 
that H is a uniform with support [0, c] and c ∈ (0, u). In light of Proposition 1, the pricing problem for a seller of type c
can be written as

max
(pd,pn)∈[0,u]2

Vd(pd, c) + Vn(pn, c), s.t. pn ≤ pd , (24)

where Vd(pd, c) and Vn(pn, c) are respectively given by

Vd(pd, c) = [μ1d + μ2d(1 − Fd(pd))] (pd − c), (25)

Vn(pn, c) = [μ1n + μ2n(1 − Fn(pn))] (pn − c). (26)

Note that we have set mass points φd(pd) and φn(pn) to zero, as it is straightforward to generalize the argument of Lemma 1
to the case in which seller’s costs are heterogeneous.

We focus on interior equilibria where the constraint pn ≤ pd is slack. In the case of homogeneous costs, this is a feature 
of all equilibria under the parametric restrictions (14) as the night profit function Vn is constant. Since the purpose of 
this appendix is to use cost heterogeneity to refine the equilibrium set under homogeneous costs, it is natural to focus on 
interior equilibria.

In any interior equilibrium, the first order conditions for the seller’s profit maximization problem are

μ1d + μ2d(1 − Fd(pd)) = μ2d F ′
d(pd)(pd − c), (27)

μ1n + μ2n(1 − Fn(pn)) = μ2n F ′
n(pn)(pn − c). (28)

The left-hand side of (27) is the seller’s marginal benefit of increasing the day price pd , which is given by the seller’s 
number of trades. The right-hand side of (27) is the seller’s marginal cost of increasing pd , which is given by the decline in 
the number of trades caused by an increase in pd multiplied by the seller’s profit per trade. Condition (27) states that the 
seller’s day price equates marginal cost and marginal benefit. Condition (28) is the analogous condition for the seller’s night 
price.

Notice that the marginal cost of increasing the price pd is strictly decreasing with respect to the seller’s cost of produc-
tion c, while the marginal benefit of increasing pd is independent of c. Therefore, (27) implies that the optimal day price, 
call it pd(c), for a seller with cost of production c is a strictly increasing function of c. Similarly, (28) implies that the opti-
mal night price, call it pn(c), for a seller with cost of production c is a strictly increasing function of c. These observations 
imply that, in any interior equilibrium, the seller’s rank in the cost distribution, i.e. H(c), is equal to the seller’s rank in the 
distribution of day prices, i.e. Fd(pd(c)), and to the seller’s rank in the distribution of night prices, i.e. Fn(pn(c)). Moreover, 
it is straightforward to show that, in any equilibrium, the highest price on the support of the distributions of day and night 
prices is the buyer’s valuation u. This observation implies that pd(c) = pn(c) = u.

Using the fact that Fi(pi(c)) = H(c) for i = {d, n}, we can write the seller’s first order conditions (27) and (28) as 
differential equations for pi(c). Specifically, we can write p′

i(c) as

p′
i(c) = μ2i H ′(c)(pi(c) − c)

μ1i + μ2i(1 − H(c))
. (29)

The general solution to the differential equation is given by

pi(c) = 2K − μ2ic2

2(μ1i + μ2i)c − 2μ2ic
. (30)

Using the fact that pi(c) = u to solve for the constant of integration K , we conclude that in any interior equilibrium the 
price in period i for a seller with a production cost c is given by

pi(c) = 2μ1icu + μ2i(c2 − c2)

2(μ1i + μ2i)c − 2μ2ic
. (31)

Let cd(p) denote the inverse of pd(c) and let cn(p) denote the inverse of pn(c). Then, the marginal distribution Fd of day 
prices is given by

Fd(pd) = H(cd(pd)) = pd

c
− 1

c

√
(pd − c)2 + 2

(
μ1d

μ

)
c(u − pd). (32)
2d
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Similarly, the marginal distribution Fn of night prices is given by

Fn(pn) = H(cn(pn)) = pn

c
− 1

c

√
(pn − c)2 + 2

(
μ1n

μ2n

)
c(u − pn). (33)

We have thus completed the characterization of the unique candidate interior equilibrium. To summarize, in the candi-
date equilibrium, every seller with a strictly higher production cost c posts a strictly higher day price pd(c) and a strictly 
higher night price pn(c). The measure Fd(pd) of sellers who post a day price non-greater than pd is equal to the measure 
of sellers with a cost non-greater than cd(p) and it is given by (32). The measure Fn(pn) of sellers who post a night price 
non-greater than pn is equal to the measure of sellers with a cost non-greater than cn(p) and it is given by (33). After veri-
fying that the seller’s second order conditions are satisfied (this can be done either numerically or analytically as in Burdett 
and Mortensen, 1998 or Bontemps et al., 2000), we can conclude that the candidate equilibrium is indeed an equilibrium. 
Notice that, in contrast to the case with identical sellers, the equilibrium is unique. Moreover, the unique equilibrium is 
such that the seller’s rank in the distribution of day prices is the same as his rank in the distribution of night prices.

Now, consider the limit of the unique equilibrium for c → 0. Using de l’Hopital rule, it is easy to verify that the marginal 
price distributions are such that

lim
c→0

Fd(pd) = 1 − μ1d

μ2d

u − pd

pd
, (34)

lim
c→0

Fn(pn) = 1 − μ1d

μ2d

u − pn

pn
. (35)

Applying again de l’Hopital rule, we find that a seller’s day price as a function of the night price, i.e. g(pn) = pd(cn(pn)), is 
such that

lim
c→0

g(pn) =
[
μ1n

μ2n
u −

(
μ1d

μ2d
− μ1n

μ2n

)
pn

]−1 μ1d

μ2d
upn. (36)

A quick comparison between (34)–(36) and (15), (16) and (18) reveals that the limit for c → 0 of the unique equilibrium 
with cost heterogeneity is exactly the equilibrium described in Section 3.3.
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