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Abstract

This paper studies price dynamics in a product markets characterized by: (a) search

frictions� in the sense that it takes time for a buyer to �nd a seller that produces

a version of the good he likes; (b) anonymity� in the sense that sellers cannot price

discriminate between �rst-time buyers and returning customers; (c) asymmetric infor-

mation� in the sense that sellers are subject to idiosyncratic shocks to their marginal

cost of production and privately observe the shocks�realizations. I �nd that the joint

dynamics of costs and prices may be very di¤erent than in a standard Walrasian mar-

ket. When shocks are i.i.d., the price remains constant in the face of �uctuations in a

seller�s marginal cost. When shocks are moderately persistent, the price adjusts slowly

and imperfectly in response to changes in a seller�s cost. Finally, when shocks are su¢ -

ciently persistent, the price adjusts instantaneously and e¢ ciently as soon as a seller�s

production cost varies.

JEL Codes : L11, D83

Keywords : Search Frictions, Asymmetric Information, Rigid Prices, Sticky Prices

1 Introduction

Consider a product market populated by buyers� each demanding one unit of the good at

regular intervals of time� and sellers� each producing a di¤erent variety of the good. In this
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market, buyers do not know whether they like the variety produced by a particular seller

when they invest some time researching it. Therefore, at any point in time, some of the

buyers are matched� they have found a seller they like� and some of them are searching�

they have yet to �nd a seller. Also, in this market, buyers are anonymous and sellers cannot

price discriminate between �rst-time and returning customers. Finally, each seller is subject

to idiosyncratic shocks to its cost of production and privately observes it.

In this frictional market, the price demanded by a seller plays three conceptually di¤erent

roles. First, it determines the distribution of gains from trade between the seller and returning

customers. Secondly, it directs the search strategy of unmatched buyers across di¤erent sellers

and markets. And �nally, the price contains information about the seller�s cost of production

and, in turn, it a¤ects the buyers�expectations about future prices.

In this paper, I develop a simple model of this type of product market and use it to

understand the relationship between the dynamics of fundamentals and the dynamics of

prices. The analysis is carried out under the maintained assumption that� perhaps because of

reputation considerations� sellers can commit in advance to a price schedule which speci�es,

for each date and public history, a menu of terms of trade from which to choose.

As a preliminary step, I study the optimal price schedule and the equilibrium price

dynamics when the realization of productivity shocks is public information. I �nd that

the optimal schedule is time-inconsistent, i.e. after any history and date, the actual price

is strictly lower than the one that would maximize the seller�s pro�ts from that date on.

Intuitively, the optimal schedule is time-inconsistent because part of the bene�t of demanding

a lower price at some date t is attained before date t� namely, the increase in the number

of unmatched buyers searching the seller at dates 0; 1; 2:::t � 1� while all of the cost of
demanding a lower price is borne at date t. Moreover, I �nd that the price is increasing in the

contemporaneous realization of the seller�s production cost. Because it is time-inconsistent

and dependent on the cost of production, this �rst-best schedule is, in general, infeasible

when the seller has private information about his productivity shocks. In particular, the

seller would typically want to pretend the cost of production is high in order to increase the

price and extract more of the gains from trade from the repeated customers.

The qualitative properties of the optimal incentive-compatible price schedule turn out to

depend on the persistence and magnitude of productivity shocks. When shocks are small and

i.i.d. overtime, the incentive-compatible schedule doesn�t give any discretion to the seller�

i.e. at every date, the menu of choices contains just one item� and the equilibrium prices are

rigid� i.e. while the seller�s cost of production changes over time, the terms of trade remain
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constant. When shocks are somewhat persistent, the incentive-compatibly schedule gives the

seller limited and history-dependent discretion� i.e. the menu of options has a narrow range

and depends on past choices� and the equilibrium prices are sticky� i.e. the adjustment of

prices to productivity shocks is spread out over an extended period of time. Finally, when

shocks are su¢ ciently persistent, the incentive-compatible schedule gives the seller maximum

discretion� in the sense that the menu contains the same prices available in the �rst-best

schedule� and prices are fully �exible� i.e. as soon as the production cost changes, the price

adjusts to its �rst-best level.

There is a common intuition behind these �ndings. If a seller with a low cost of production

deviates from the equilibrium and chooses the price that buyers expect to observe when the

cost is high, we can identify two channels through which this deviation a¤ects pro�ts. First,

pro�ts change because the seller charges a higher price in that period. Because of the time-

inconsistent nature of the prices problem, this e¤ect increases pro�ts. Secondly, pro�ts change

because buyers believe the seller has a high cost and expects higher prices in the future. This

second e¤ect reduces pro�ts. When shocks are i.i.d., the second e¤ect is not active and the

only way to satisfy the incentive-compatibility constraint is by eliminating discretion. When

shocks are somewhat persistent, the second e¤ect is active and it is possible to give some

discretion to the seller. When shocks are su¢ ciently persistent, the e¤ect of current price

choices on buyer�s expectations is so strong that the �rst-best price schedule is incentive

compatible.

Related Literature. First, this paper contributes to the literature on pricing in markets

with search frictions. Diamond (1971) analyzes the case where� because of lack of com-

munication between buyers and sellers before the search decisions are made� prices have

exclusively a distributive role. He �nds that all sellers set their price equal to the buyers�

valuation of the good and extract all the gains from trade. Montgomery (1991), Moen (1997)

and Burdett, Shi andWright (2001) analyze the case where� because buyers perfectly observe

prices before deciding where to search and sellers can perfectly identify customers� prices

play only the role of allocating the search e¤ort of unmatched buyers across sellers. They

�nd that sellers compete for prospective buyers and equilibrium prices lie between the com-

petitive and the monopoly levels. In the context of the labor market, Burdett and Mortensen

(1998) study the case where� because employers cannot price discriminate between employ-

ees with di¤erent tenure� the wage plays both the roles of distributing gains from trade and

allocating workers across �rms. Just like in my paper, they �nd that wages are higher when

the expected duration of employment relationships is longer and when search frictions are

smaller. Unlike in my paper, they focus on the no-discounting case and �nd that the wage

schedule is time-consistent. Coles (2001) generalizes the Burdett-Mortensen model to allow
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for discounting and �nds out that the optimal wage schedule is indeed time-inconsistent.

Nevertheless, Coles does not analyze the e¤ect of either public or private productivity shocks

on prices.

Secondly, my paper is related to the literature on pricing in markets where customers have

a cost of switching from one provider to another. In fact, also in these markets, the price plays

the dual role of distributing rents between the seller and the �locked-in�buyers and directing

the �ows of �uncommitted� buyers. And, also in these markets, the seller faces, in every

period, a trade-o¤ between increasing his future customer base (by charging a low price) and

exploiting his existing base (by charging a high price). Unlike in my paper, the literature

on switching costs analyzes this trade-o¤ under the assumption that sellers cannot commit

to future prices (see Klemperer (1987, 1995) or Beggs and Klemperer (1992)). Moreover,

this literature has not analyzed the dynamics of prices when sellers have private information

about their production costs.

Structure of the Paper. In Section 2, I describe the physical environment. In Section

3, I formulate the seller�s problem when productivity shocks are perfectly observable and

characterize the �rst-best price schedule. In Section 4, I begin by formulating the pricing

problem when productivity shocks are privately observed by the seller. Then, I identify

a condition on the persistence of productivity shocks which guarantees that the �rst-best

schedule is incentive compatible under asymmetric information. Finally, I characterize the

qualitative properties of the second-best price schedule when the incentive compatibility

constraints are binding. Section 5 brie�y concludes. All proofs are relegated in the Appendix.

2 The Environment

The market for an indivisible and perishable consumption good is populated by a �nite

number of sellers and a continuum of buyers with large measure. In period t each seller i can

produce the good at the constant marginal cost ci;t. This cost is an idiosyncratic random

variable that can take either the relatively low value c` or the relatively high value ch; 0 <

c` < ch: The probability of each realization depends on the seller�s past productivity� namely,

Pr (ci;t+1 = ci;t) = � � 1
2 : The seller maximizes the expected sum of pro�ts discounted at rate

� 2 (0; 1) : In period t; each buyer j can participate to the market by paying an opportunity
cost of z > 0 utils. If the buyer visits the market and purchases one unit of the good at the

price pi;t, he receives utility u� pi;t. If the buyer visits the market and doesn�t purchase the
good, he receives zero utility. The buyer maximizes the expected sum of utilities discounted

at rate �.
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Buyers and sellers come together through a search and matching process. If buyer j

searches seller i, the two parties match successfully with probability �i;t and fail to match

with probability 1 � �i;t. In the �rst case, the buyer has the option to purchase the good
from the seller in the current period and, as long as the match survives, in future periods.

In the second case, the buyer cannot trade in the current period and has to search again

for a seller in the next period. A match is dissolved either when the buyer is displaced (an

event that occurs with probability � 2 (0; 1) in each period) or when he chooses to stop
trading with the seller.1 Because of congestion e¤ects, we assume that the probability �i;t is

a decreasing function of the measure qi;t of buyers searching seller i in period t: Because of

network e¤ects, we assume that the probability �i;t is an increasing function of the measure

ni;t of buyers who visited seller i in period t � 1. For the sake of analytical tractability, we
assume that �i;t only depends on the ratio between qi;t and ni;t. In particular, the function

� says Rt into [0; 1] and is such that �0 (q=n) < 0; � (0) = 1 and � (1) = 0.

In period t, events unfold in the following order. First, each seller realizes its productivity

shock and publishes its terms of trade. Than, each buyer observes the entire distribution of

terms of trade and decides whether to visit the market. Furthermore, matched buyers decide

whether to remain with their current provider or to search elsewhere. Unmatched buyers

only choose which seller to search. Finally, new matches are formed and production takes

place. Throughout the paper, we assume that sellers cannot price discriminate among buyers

because buyers are anonymous in this market.

3 Pricing with Observable Productivity Shocks

The purpose of this paper is to formulate and solve the pricing problem of a seller that

enters the market in period t = 0 with the cost of production c0 and a base of customers of

measure n(c0) > 0. I assume that� perhaps because of reputational concerns� the seller can

pre-commit to a sequence of state-contingent prices p = fp (ht)g1t=0, where ht is the seller�s
public history up to date t. In this section, I also assume that productivity shocks are public

and therefore ht = ct = fc0; c1,::::::ctg.

3.1 Seller�s Problem

Denote with U (ct) the expected lifetime utility for a buyer who is matched with the seller

in period t, after the history ct has been realized. In period t, the buyer trades with the
1This no recall assumption is costumarily adopted in search theory to simplify the dynamics of the buyers�

problem (cf Burdett and Mortensen (1998), Burdett and Coles (2003), Fishman and Rob (1995)).
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seller and receives the periodical utility u � p (ct). With probability 1 � �, in period t + 1
the buyer has the option of remaining matched to the seller and receiving the continuation

utility U(ct+1) or searching some other seller/market and receiving the continuation utility

Z. With probability �, in period t + 1 the buyer is exogenously displaced and he receives

the continuation utility Z. Therefore, U (ct) is equal to

U(ct) = u� p(ct) + �
X
ct+1

Pr(ct+1jct)
�
(1� �)max

�
U(ct+1); Z

	
+ �Z

�
: (1)

Notice that the value Z of the outside option is greater than (1 � �)�1z because the buyer
is free to opt out of the market. Also, notice that Z is smaller than (1� �)�1z because, at
this value, the entry of new buyers in the market is in�nitely elastic. Therefore, Z is equal

to the present value of the �ow cost of entry z.

Next, consider a buyer who decides to search the seller in period t, after the history ct

has been realized. With probability �(q(ct)=n(ct)), the buyer matches successfully with the

seller and receives the expected lifetime utility U(ct). With probability 1 � �(q(ct)=n(ct)),
the buyer does not match with the seller and receives the lifetime utility �Z. In expectation,

the value of searching the seller in period t is smaller than Z� because buyers are free to

enter the market and search any particular seller they like� and is greater than Z whenever

q(ct) > 0� because those q(ct) buyers are free to search elsewhere. Therefore, in equilibrium,

the measure of buyers q(ct) searching the seller is such that

�
�
q
�
ct
�
=n
�
ct
��
[U
�
ct
�
� �Z] + �Z � Z (2)

and q (ct) � 0 with complementary slackness condition. It is convenient to denote with

�(U(ct)) the ratio of buyers searching the seller q(ct) to old customers n(ct) that solves the

equilibrium condition (2).

If the value U(ct) of being matched to the seller is smaller than the outside option Z, the

entirety of the n(ct) old customers leaves and no new customers arrive. If U(ct) is greater than

Z, a fraction 1�� of the seller�s n(ct) old customers returns and n(ct) ��(U(ct)) �� (�(U(ct)))
new customers arrive. Overall, the law of motion for the seller�s customer base can be written

as

n(
�
ct; ct+1

	
) = n

�
ct
�
�
�
1� � + �

�
U
�
ct
���
, (3)

where � : R! R is a function that takes the value ��1 if U(ct) < Z and �(U(ct))�� (�(U(ct)))
otherwise. From the properties of �, it follows that � is continuous and monotonically

increasing in U (ct). In addition, for the sake of analytical tractability, I assume that � is

concave and � (1) � ��1 � (1� �) 2 .
2The assumption on the concavity of � is needed to guarantee that the seller�s maximization problem is

strictly quasi-concave. The assumption on �(1) guarantees that the seller�s value function is �nite.
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In period t = 0, the seller commits to the price schedule p that maximizes the expected

discounted sum of pro�ts taking as given the law of motion for the customer base, i.e.

max
p

1P
t=0
�t
�P
ct
Pr(ctjc0)n(ct)[1� � + �(U(ct))][p(ct)� ct]

�
, s.t.

(1), (3) and c0; n(c0) given.

(SP1)

The sequence problem (SP1) has two remarkable properties. First, after any history ct, the

optimal schedule p maximizes the seller�s pro�ts subject to providing the buyers�at least the

lifetime utility U(ct). Secondly, after any history ct, the price schedule that maximizes the

seller�s pro�ts subject to providing the buyers with U(ct) is independent from the customer

base n(ct) and the maximized pro�ts are proportional to n(ct). Using these two properties,

in the Appendix, I prove that the sequence problem (SP1) has an equivalent recursive-form

representation. In the recursive problem, the state variables are the seller�s cost of production

ci and the buyers�promised value U . The choice variables are the value V actually delivered

to the buyers, V � U , the current price p and next period�s promised values U 0j , j = f`; hg.
The objective function is the sum of current pro�ts (1��+�(V )) � (p� ci) and future pro�ts
(1� � + �(V )) � � � E[�j(U 0j)jci].

Lemma 1: (Recursive Formulation) Denote with �i(U) the value function associated to the

sequence problem (SP1) when c0 = ci, n(c0) = 1 and U(c0) is constrained to be greater or

equal than U . Then �i(U) solves the Bellman equation

�i(U) = max
p;V;U 0

j�Z
(1� � + �(V ))

h
p� ci + �

P
j Pr(cj jci)�j(U 0j)

i
, s.t.

U � V = u� p+ �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
.

(BE1)

Let fVi(U); pi(U); U 0ijj(U)g be the policy functions associated to the solution to the Bellman
equation above. Then, for all histories ct = fct�2; ci; cjg, the optimal price schedule is such
that p(ct) is equal to pj(U(ct)), where U(ct) = U 0jji(U(c

t�1)) and U(c0) = Z.

3.2 First-Best Price Schedule

After substituting out the price p, the recursive problem (BE1) can be broken down in two

stages, i.e.

�i(U) = max
V
(1� � + �(V )) � �i(V ),

�i(V ) = u� ci � V + ��Z + max
U 0
j�Z

P
j Pr(cj jci)

�
�j(U

0
j) + (1� �)U 0j

�
.

(4)
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In the �rst stage, the seller decides how much lifetime utility V its customers should be

o¤ered subject to the promise-keeping constraint V � U . In the second stage, the seller

decides how the lifetime utility V should be allocated over time and across states.

How much lifetime utility should the seller o¤er to its customers? If V is smaller than the

outside option Z, the seller does not have any customers and its pro�ts are equal to zero. If

V is greater than Z, the seller has 1��+ �(V ) customers and obtains the pro�t �i(V ) from
each one of them. Over this region, the seller�s total pro�ts (1 � � + �(V ))� �i(V ) are �rst
positive and increasing and then decreasing in the lifetime utility V . They are maximized at

U i; where the bene�t of attracting �
0(U i) additional new customers is equal to the cost of

lowering the current price by 1 dollar, i.e.

�0(U i) � �i(U i) = 1� � + �(U i) (5)

The seller�s o¤er is subject to the promise-keeping constraint V � U . If U is lower than U i,

the constraint is moot and the seller o¤ers the pro�t-maximizing value U i. If U is greater

than U i, the constraint binds and the seller o¤ers its customers the value it had promised

them.

How should the seller allocate the buyers�lifetime utility V over time and across states?

The seller can backload any feasible allocation by reducing the utility u � p o¤ered to its
customers in the current period by Pr(cj jci)�(1��) dollars and increasing their continuation
value U 0j by 1 dollar. Then, in the current period, the seller collects Pr(cj jci)�(1 � �)
extra dollars per unit of output sold. And, in the next period, it attracts �0(U 0j) additional

customers and lowers the price by 1 dollar. If the seller frontloads a feasible allocation, the

e¤ects on current and future pro�ts have the same magnitude and the opposite sign. The

optimal allocation (u�p; U 0`; U 0h) is such that the seller�s pro�ts cannot be increased by tilting
the timing of bene�ts neither back nor forth, i.e.

�(1� �) = �0(U 0j) � �j(U 0j)� (1� � + �(U 0j)); for j = `; h; (6)

p(V ) = u� V + �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
: (7)

Notice that, because an increase in U 0j by 1 util allows the seller to not only attract �
0(U 0j) ad-

ditional customers in the next period but also raise its current price, the optimal continuation

value U 0j is greater than U j .

Using the solution to the �rst and second stage problems, I can recover the structure of

the �rst-best price schedule p and its qualitative properties. In period t = 0, the seller enters

the market with no prior obligations, U(c0) = Z; and the production cost c0 = ci. The seller
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o¤ers its customers the pro�t-maximizing lifetime utility U i by setting the current period�s

price to p(U i) and committing to the continuation values (U
0
`; U

0
h). In period t � 1, after

the history ct has been realized, the seller has the production cost ct = cj and an obligation

to deliver its customers at least U 0j . The seller o¤ers them the promised lifetime utility U 0j
by setting the current period�s price to p(U 0j) and committing to the continuation values

(U 0`; U
0
h). Because U

0
i is greater than U i, prices are decreasing over time. Also, because U `

is greater than Uh and U
0
` is greater than U

0
h, prices are increasing in the contemporaneous

realization of the cost of production.

Proposition 1: (Pricing with observable costs). The �rst-best price schedule p = fp (ct)g1t=0
has the following properties:

1. If t = 0 and ct = ci; p(ct) = p(U i): If t � 1 and ct = ci, p(ct) = p(U 0i);

2. For all ct and c0 such that ct = c0, p(ct) < p(c0);

3. For all ct and �ct such that ct = c` and �ct = ch, p(ct) � p(~ct).

The �rst-best price schedule characterized in Proposition 1 is time-inconsistent. At date

t = 0, the seller �nds optimal to charge its customers the high price p(U i) and promise

them the low price p(U 0i) for the subsequent period. When date t = 1 arrives, the seller has

already obtained part of the bene�t of promising p(U 0i)� i.e. the increase in the in�ow of

new customers at t = 0� but has still to bear its entire cost. Then, the seller would like to

renege the original schedule and, once again, charge its customers the high price p(U i) and

promise them the low price p(U 0i) in the future.

4 Pricing with Unobservable Costs

Consider a seller that enters the market in period t = 0 with the cost of production c0 and

a customer base of measure n(c0) > 0. Assume that the seller can commit to a sequence

of state-contingent prices p = fp(ht)g1t=0, where ht is the seller�s public history up to date
t. Assume that, in every period t � 1, the seller privately observes the realization of its

cost of production ct and makes a public announcement bct 2 fc`; chg about it. Hence, ht
is bct = fc0;bc1; :::bctg. In this section, I formulate and solve the pricing problem of the seller

subject to the restriction that, after any history bct, the customer�s beliefs about the cost of
production ct are degenerate.
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4.1 Seller�s Problem

Without loss in generality, I can assume that the buyers interpret the seller�s reports as

truthful, i.e. Pr(ct = ĉtjbct�1) = 1. Denote with U(bct) the expected lifetime utility for a buyer
who is matched with the seller in period t, after the history of announcements bct = fbct�1; cjg
has been reported. In period t, the buyer trades with the seller and receives the periodical

utility u� p(bct). In period t+ 1;the buyer expects that the seller will report the production
cost cj and o¤er him the continuation utility U(fbct; cjg) with probability � � 1=2. The buyer
expects that the seller will report the production cost c�j and o¤er him the continuation

utility U(fbct; c�jg) with probability 1� �. Given those beliefs, U(bct) is equal to
U(bct) = u� p(bct) + � �Pbct+1 Pr(bct+1jbct)[(1� �)maxfU(bct+1); Zg+ �Z]� . (8)

Along the equilibrium path, the seller�s reporting strategy must be consistent with the

buyers� inference of the production cost ct from the announcement ĉt. Therefore, for allbct�1 = ct�1 and ct = ci; the price schedule p must induce the seller to report its type

correctly, i.e.

1P
�=t

���t f
P

c� Pr(c
� jct)n (c� ) [1� � + �(U (c� ))] [p (c� )� c� ]g �

1P
�=t

���t f
P

c� Pr (c
� jct)n (bc (c� )) [1� � + �(U (bc (c� )))] [p (bc (c� ))� c� ]g ;

(IC)

where bc(c� ) is the public history fct�1; c�i; ct+1;:::c�g. In writing the incentive compatibility
constraint (IC), I have assumed that� independently from its period�t announcement� the
seller will �nd optimal to report its type correctly in any subsequent period � � t. This is
the right assumption to make because the seller�s expected pro�ts from reporting its true

type and from lying depend on the public history bc��1 and on the cost of production c� but
not on the previous realizations of productivity shocks c��1. Therefore, the same incentive

compatibility constraint (IC) which guarantees that the seller will truthfully report c� after

the history bc��1 has been realized and reported, also guarantees that the seller will truthfully
report c� after the history bc��1 has been reported and some di¤erent history has been realized.
In general, the optimal incentive-compatible price schedule p� need not be renegotiation

proof, i.e. there may exist some histories after which the seller and its customers would agree

to modifying p�. In order to rule out this possibility, I restrict attention to price schedules p
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such that, for any reported history ĉt = ct and for any feasible p̂3 , if U(ctjp̂) > U(ctjp) then
1P
�=t

���t f
P

c� Pr (c
� jct)n(c� jp)[1� � + � (U (c� jp))][p(c� )� c� ]g >

1P
�=t

���t f
P

c� Pr (c
� jct)n(c� jp̂)[1� � + � (U (c� jp̂))][p̂(c� )� c� ]g :

(RP)

Notice that� because the value of a price schedule depends on the reported history bct�1 and
on the production cost ct; but does not depend on the realized history ct�1� the renegotiation

proofness constraint (RP) guarantees that p is ex-post e¢ cient even if the seller has lied in

some previous period � � t� 1.

In period t = 0, the seller commits to the price schedule p that maximizes the expected

discounted pro�ts subject to the incentive compatibility and renegotiation proofness con-

straints, i.e.

max
p

1P
�=t

�t f
P

ct Pr(c
tjc0)n(ct)[1� � + �(U(ct))][p(ct)� ct]g, s.t.

(IC), (RP) and c0; n(c0) given.

(SP2)

The sequence problem (SP2) has two remarkable features. First, after any realized history ct

and reported history bct, the optimal price schedule p satis�es (IC) and (RP) at all subsequent
dates � � t+1. And, among all the feasible schedules, p is the one that maximizes the pro�ts
of a seller with production cost ĉt subject to providing the buyers with a lifetime utility

non-smaller than U(bct). Secondly, after any realized history ct and reported history bct, the
feasible schedule that maximizes the seller�s pro�ts subject to providing the buyers with U(bct)
is independent from the customer base n(ĉt) and the maximized pro�ts are proportional to

n(ĉt). Using these two properties, in the Appendix, I prove that the sequence problem (SP2)

has an equivalent recursive-form representation.

Lemma 2: (Recursive Formulation) Denote with �i(U) the value function associated to the

sequence problem (SP2) when c0 = ci, n(c0) = 1 and U(c0) is constrained to be greater or

3The schedule p̂ is feasible if it satis�es the incentive-compatibility constraint (IC) and the renegotiation-

proofness condition (RP) in all periods � � t+ 1.
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equal than U . Then �i(U) solves the Bellman equation

�i(U) = max
p;V;U 0

j�Z
(1� � + �(V ))

h
p� ci + �

P
j Pr(cj jci)�j(U 0j)

i
, s.t.

U � V = u� p+ �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
,

�j(U
0
j) � ~��j(U

0
�j) for j = `; h,

~�i(U) = (1� � + �(Vi(U)))
h
pi(U)� c�i + �

P
j Pr(cj jc�i)�j(U 0jji(U))

i
.

(BE2)

Let fVi(U); pi(U); U 0ijj(U)g be the policy functions associated to the solution to the Bellman
equation above. Then, for all histories ct = fct�2; ci; cjg, the optimal price schedule is such
that p(ct) is equal to pj(U(ct)), where U(ct) = U 0jji(U(c

t�1)) and U(c0) = Z.

4.2 Very Persistent Shocks: Fully Flexible Prices

When it satis�es the incentive compatibility and renegotiation proofness constraints, the

�rst-best schedule is the solution to the pricing problem under asymmetric information.

Because the �rst-best schedule is ex-post e¢ cient, the renegotiation proofness constraint

(RP) is certainly satis�ed. But because the schedule is time-inconsistent, the incentive

compatibility constraint (IC) need not hold. In this subsection, I identify a necessary and

su¢ cient condition on the persistence of productivity shocks which guarantees that the �rst-

best schedule will be incentive compatible. For the sake of simplicity, I carry out the analysis

under the assumption that � is linear over the range of values promised by the seller.

Imagine that the seller realizes the high cost of production ch after having announced the

history ĉt�1. If it chooses to report the low cost c` instead of ch, the seller lowers its price by

p(U 0h)� p(U 0`) dollars and attracts �0(U 0`�U 0h) additional customers in period t. Because the
�rst-best price schedule is history independent, the report ĉt does not a¤ect the dynamics of

prices and customers in subsequent periods. Therefore, the seller reports its actual cost of

production ch if and only if

�h(U
0
h)� ~�`(U 0`) = (1� � + �(U 0`)) [1� �(1� �) (2�� 1)]� �0�h(U 0h) =

(1� �) [1� � (1� � + �(U 0`)) (2�� 1)] + �0 [1� � (1� �) (2�� 1)] (U 0` � U 0h) � 0,
(9)

where the second line is obtained after substituting in the �rst order condition (6). Ana-

lytically, it is immediate to verify that the incentive compatibility constraint (9) is always
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satis�ed. Intuitively, the seller has no incentive to report c` instead of ch because this would

imply lowering a price that, from its perspective in period t, is already too low.

Next, imagine that the seller realizes the low cost of production c` after having announced

the history ĉt�1. If it chooses to report the high cost ch instead of c`, the seller increases

its price by p(U 0h) � p(U 0`) dollars and attracts �0(U 0` � U 0h) fewer customers in period t.
The report ĉt does not a¤ect the dynamics of prices and customers in subsequent periods.

Therefore, the seller reports its actual cost of production c` if and only if

�`(U
0
`)� ~�h(U 0h) = �0�`(U 0`)� (1� � + �(U 0h)) [1� � (1� �) (2�� 1)] =

�0 [1� � (1� �) (2�� 1)] (U 0` � U 0h)� (1� �) [1� � (1� � + �(U 0h)) (2�� 1)] � 0.
(10)

The incentive compatibility constraint (10) may be satis�ed or violated depending on para-

meter values. In particular, there exists a critical level of persistence �� of the productivity

shocks such that the constraint (10) is satis�ed if � is greater than �� and is violated if �

is below ��. Intuitively, because the schedule is time inconsistent, the low cost seller would

like to raise the current price. But by reporting ch instead of c`, the seller not only increases

the current price, it also makes customers irrationally pessimistic about the future terms of

trade. And this side e¤ect becomes stronger the more persistent productivity shocks are.

Proposition 2: (Fully Flexible Prices) There exists a �� 2
�
1
2 ; 1
�
such that, for all � >

(<)��, the �rst-best price schedule is feasible and optimal (not feasible) when the seller has

private information about its productivity shocks.

4.3 IID Shocks: Rigid Prices

When the persistence of productivity shocks is lower than the critical level ��, the �rst-best

schedule violates the incentive compatibility constraint (IC). In order to characterize the

second-best schedule, it is convenient to break down the recursive problem (BE2) in two

stages

�i(U) = max
V�U

(1� � + �(V )) � �i(V ),

�i(V ) = u� ci � V + ��Z + max
U 0
j�Z

P
j Pr(cj jci)

�
�j(U

0
j) + (1� �)U 0j

�
; s.t.

�j(U
0
j) � ~�j(U

0
j) for j 2 f`; hg.

(11)

In the �rst-stage problem, the choice variable is the customers�lifetime utility V . The

objective function is the expected discounted pro�t for a seller with the current cost of
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production ci. The function is �rst increasing and then decreasing in V and attains its

unique maximum at U i, where U i is the solution to the equation (5). The choice of V is

limited by the promised-keeping constraint U � V . Therefore, if U � U i, the solution to the
�rst-stage problem is to provide customers with the pro�t-maximizing value U i. If U > U i,

the solution is to provide customers with the promised value U .

In the second-stage problem, the choice variables are the customers�continuation values

U 0` and U
0
h. The objective function is the pro�t per customer for a seller that provides them

with the lifetime utility V . The function is quasi-concave in (U 0`; U
0
h) and attains its unique

maximum at (U 0�` ; U
0�
h ), where U

0�
j is the solution to the equation (6). The choice of (U 0`; U

0
h)

is limited by the incentive-compatibility constraint �j(U 0j) � ~��j(U
0
�j). Because V enters

the objective function separately from the choice variables, the solution to the second-stage

problem is independent from the lifetime utility V and can be denoted with (U 0`ji; U
0
hji).

Because the objective function is increasing in U 0j and the constraint is independent from U 0j

for all U 0j � U j , the solution to the second-stage problem (U 0`ji; U 0hji) is greater than (U `; Uh).

Using the qualitative properties of the solution to the �rst and second stage problems, I

can express the incentive compatibility constraint as

(1� � + �(U 0j)) � �j(U 0j) � (1� � + �(U 0�j)) � ~��j(U 0�j),

~�i(U) � u� c�i � U + �
P

j

n
Pr(cj jci)

h
(1� �)U 0jji + �Z

i
+ Pr(cj jc�i)�j(U 0jji)

o
.

(12)

Notice that, if the seller realizes the production cost c�i but announces ci, its expected pro�ts

per customer ~�i(U) are generally di¤erent from ��i(U). First, when the seller misreports its

type, the customers�expectations about the value of the match are not correct. In particular,

while the customers expect to receive the continuation value U 0iji with probability � and U
0
�iji

with probability 1 � �, the seller o¤ers them U 0iji a fraction 1 � � of the time and U 0�iji a
fraction � of the time. Secondly, when the seller misreports its type, the continuation values

U 0`ji and U
0
hji prescribed by the second-best schedule are not its preferred way to allocate the

customers�lifetime utility over time and across states.

Only when shocks are i.i.d., ~�i(U) is equal to ��i(U). In this case, a seller that realizes

the cost of production cj correctly reports its type if it attains higher pro�ts by o¤ering to

its customers the lifetime utility U 0j rather than U
0
�j , i.e.

(1� � + �(U 0j)) � �j(U 0j) � (1� � + �(U 0�j)) � �j(U 0�j). (13)

Since U 0h and U
0
` are both greater than Uh, a seller that realizes the cost of production ch

announces its true type if and only if U 0h is smaller than U
0
`. Since U

0
` is greater than U ` but
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U 0h need not be greater than U `, a seller that realizes the cost of production c` announces

its true type if either U 0h is greater than U
0
` or su¢ ciently smaller than the pro�t-maximizing

value U `. The set of continuation values (U
0
`; U

0
h) that induces both seller�s types to report

their actual costs is illustrated in Figure 1.

Figure 1: Incentive compatible continuation values (IID Shocks)
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Given the characterization of the incentive compatibility constraint (13), I can conclude

that there exist two candidate solutions to the second-stage problem. The �rst solution

prescribes that the continuation value o¤ered to the customers should be independent from

the seller�s announcement about its cost of production, i.e. U 0h = U
0
` = U

0, and such that the

allocation of customers�utility over time is on average e¢ cient

�(1� �) =
P

j
1
2 [�

0(U 0) � �j (U 0)� 1� � + �(U 0)] . (14)

The second solution prescribes that the continuation value should be lower when the cost of

production announced by the seller is higher, i.e. U 0h < U
0
`, and that U

0
h should be su¢ ciently

far below U ` to induce the low-cost seller to truthfully report its type. When productivity

shocks are small, the state-independent solution is optimal because it closely approximates

the �rst-best (U 0�` ; U
0�
h ) while the state-contingent solution approximates the no commitment

outcome (U `; Uh). This leads to the following proposition.

Proposition 3 (Rigid Prices) Let c`(�) = c�� and ch(�) = c+� for some c 2 (0; u� z) :
If � = 1=2, there exists a �� > 0 such that, for all � 2 (0;��); the second-best price schedule
has the following properties:

1. If c0 = ci, the price p(c0) is p(U i);
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2. For t � 1 and all ĉt, the price p(ĉt) is p(U 0);

3. The function p(U) is given by u� U + �[(1� �)U 0 + �Z].

4.4 Moderately Persistent Shocks: Sticky Prices

In this subsection, I characterize the optimal price schedule under asymmetric information

when production costs are positively correlated over time, but not to the point where the

�rst-best schedule becomes feasible. In order to develop the analysis, I �nd convenient

to �rst solve a version of the second-stage problem (11) that abstracts from the incentive

compatibility constraint for the high-cost seller and to later verify that the constraint is

satis�ed.

Let the persistence � of production costs be anywhere in the interval (0; ��). The relaxed

version of the second-stage problem in (11) is

�i(V ) = u� ci � V + ��Z + max
U 0
j�Uj

P
j Pr(cj jci)

�
�j(U

0
j) + (1� �)U 0j

�
; s.t.

(1� � + � (U 0`)) � �` (U 0`) � (1� � + � (U 0h)) � e�h (U 0h) :
(15)

Consider the incentive compatibility constraint for the low-cost seller. On the one hand,

the seller�s pro�ts from truthfully reporting its type are monotonically decreasing with the

continuation value U 0` promised to its customers. On the other hand, the seller�s pro�ts

from misreporting its type are �rst increasing and then decreasing in the continuation value

U 0h expected by the customers and they are maximized at ~Uh 2 [Z;U `]. Moreover, when
U 0` = U 0h, the seller makes higher pro�ts by correctly reporting its type rather than lying.

Therefore, the incentive compatibility constraint is satis�ed either when U 0h is not much

smaller than the alternative continuation value U 0` or when U
0
h is su¢ ciently far below the

pro�t-maximizing value ~Uh. The set of incentive-compatible continuation values is illustrated

in Figure 2.
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Figure 2: Incentive compatible continuation values (Persistent Shocks)
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When � < ��, the �rst-best solution (U 0�` ; U
0�
h ) to the second-stage problem does not sat-

isfy the low-cost seller�s incentive compatibility constraint. The second-best solution distorts

the continuation values (U 0`; U
0
h) away from (U 0�` ; U

0�
h ) in order to make the low-cost seller in-

di¤erent between correctly reporting its type and lying. More speci�cally, when productivity

shocks are small, the second-best solution distorts the continuation value U 0` downward and

U 0h upward. And, if in the previous period the seller has reported the low cost of production,

then U 0` is distorted less and U
0
h is distorted more than if the seller had reported ch. Over-

all, the second-best continuation values (U 0`ji; U
0
hji) are such that U

0�
h � U 0hji < U 0`ji � U 0�`ji,

U 0`j` > U
0
`jh and U

0
hjh < U

0
hj`.

Now, I am in the position to recover the structure of the second-best price schedule

p = fp (bct)g1t=0. In period t = 0, the seller enters the market with no prior obligations,

U(c0) = Z, and the production cost ci. The seller o¤ers its customers the pro�t-maximizing

lifetime utility U i by setting the current period�s price to pi(U i) and committing to the

continuation values (U 0`ji; U
0
hji), where

pi(U) = u� U + �
P

j Pr (cj jci) [(1� �)U
0
jji + �Z]. (16)

In period t � 1 and after the public history ĉt�1 = fĉt�2; cig has been realized, the seller
reports its actual production cost cj and o¤ers its customers the promised lifetime utility U 0jji
by setting the current period�s price to pj(U 0jji) and committing to the continuation values

(U 0`jj ; U
0
hjj).
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From the properties of the continuation values U 0jji, I can characterize the joint dynamics

of costs and prices. First, �steady-state�prices are increasing in the production cost. That is,

if the seller realizes the production cost c` for a su¢ ciently long period of time, it charges the

price p`(U 0`j`) which is strictly lower than the price ph(U
0
hjh) it would have charged if it had

realized ch instead. Secondly, prices are �sticky.�That is, when the seller �rst realizes the

high production cost, it charges a price ph(U 0hj`) which is strictly lower than the steady-state

level ph(U 0hjh). Conversely, when the seller �rst realizes the low production cost, it charges a

price p`(U 0`jh) which is strictly greater than p`(U
0
`j`).

Proposition 4: (Sticky Prices) Let c` = c � � and ch = c + � for some c 2 (0; u� z) :
There is a �� > 0 such that, for all � 2 (0;��); the second-best price schedule has the
following properties:

1. If c0 = ci, p(c0) is pi(U i). If t � 1 and ĉt = fĉt�2; ci; cjg, p(ĉt) is pj(U 0jji);

2. If ĉt1 = fĉt�21 ; ch; chg and ĉt2 = fĉt�21 ; c`; c`g, p(ĉt1) is strictly greater than p(ĉt2);

3. If ĉt1 = fĉt�21 ; c`; chg and ĉt2 = fĉt�21 ; ch; chg, p(ĉt1) is strictly smaller than p(ĉt2): If
ĉt1 = fĉt�21 ; ch; c`g and ĉt2 = fĉt�21 ; c`; c`g, p(ĉt1) is strictly greater than p(ĉt2).

5 Conclusions

In this paper, I have studied price dynamics in product markets characterized by: (a) search

frictions� in the sense that it takes time for a buyer to �nd a seller that produces a version of

the good he likes; (b) anonymity� in the sense that sellers cannot price discriminate between

�rst-time buyers and returning customers; (c) asymmetric information� in the sense that

sellers are subject to idiosyncratic shocks to their marginal cost of production and privately

observe the shocks�realizations.

In these frictional markets, prices play three conceptually distinct roles: (a) allocative�

prices direct the search e¤ort of unmatched buyers across di¤erent sellers; (b) distributive�

prices divide the gains from trade between sellers and their repeated customers; (c) informa-

tive� prices may signal the seller�s cost of production and, indirectly, about the future terms

of trade.

The main �nding of the paper is that, in these frictional markets, the joint dynamics of

costs and prices may be qualitatively very di¤erent than in a standard Walrasian market.

More speci�cally, when shocks are i.i.d., the price remains constant in the face of �uctuations
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in a seller�s marginal cost. When shocks are moderately persistent, the price adjusts slowly

and imperfectly in response to changes in a seller�s cost. Finally, when shocks are su¢ ciently

persistent, the price adjusts instantaneously and e¢ ciently as soon as a seller�s production

cost varies.
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A Appendix

A.1 Proof of Lemma 1

Claim 1: After any history ct; the optimal price schedule p is such that U(ctjp) � Z:
Proof: On the way to a contradiction, let ct1 be the earlier history at which U(c

t
1jp) � Z:

Then, if the history ct1 is realized (an event which occurs with positive probability), the seller

loses all its current customers and can�t attract any any new customers in the future. Its

expected discounted pro�ts are equal to zero. Now, consider an alternative schedule bp such
that bp(c� ) = p(c� ) if c� is not a subsequent of ct1 and bp(c� ) = u � z > 0 otherwise. For all
� < t; the seller�s periodical pro�ts are the same with bp and p because prices and customers
are the same. Similarly, for all ct 6= ct1; the seller�s continuation pro�ts are the same with bp
and p. Finally for ct = ct1; the continuation pro�ts are strictly positive. Overall, in period

t = 0, the seller strictly prefers to commit to the schedule bp that p; which contradicts the
optimality of the latter. k

Denote with �i(U) the value function associated to the sequence problem (SP1) when

c0 = ci; n(c0) = 1 and U(c0) is constrained to be greater or equal than U: Denote with �
+
i (U)

the value function associated to (SP1) when c0 = ci; n(c0) = 1 and U(c0) is constrained to

be equal to U:

Claim 2: The value functions �i(U) and �
+
i (U) are such that

�i(U) = max
V;p;U 0

j�Z
(1� � + �(V ))

h
p� ci + �

P
j Pr(cj jci)�

+
j (U

0
j)
i
; s.t.

U � V � u� p+ �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
.

(A1)
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Proof: Making use of Claim 1, I can write the value function �i (U) as

�i(U) = max
p(c0);p1;

U(c0);U(c
1)

n(c1)
h
p(c0)� ci + �

P
j Pr(cj jci)

hP
c� Pr (c

tj fc0; cjg) n(c
t+1)

n(c1) [p(c
t)� ct]

ii

U � U(c0) � u� p(c0) + �
P

j Pr(cj jci) [(1� �)U(fc0; cjg) + �Z],

Z � U (ct) � u� p(ct) + �
P

ct+1 Pr(c
t+1jct)

�
(1� �)U(ct+1) + �Z

�
,

n(c1) = (1� � + �(U(c0))), n(c
t+1)

n(c1) = n(ct)
n(c1) (1� � + �(U(c

t))).

The maximization problem above can be broken down in two stages. In the �rst stage,

the seller chooses p(c0); U(c0) and U(fc0; cjg) subject to the �rst and third constraints. In
the second stage, the seller chooses p1 = fp (ct)g1t=1 in order to maximize its continuation
pro�ts subject to delivering exactly U(fc0; cjg) to the customers and given an initial cost
of production cj and a customer base with measure n

�
c1
�
=n
�
c1
�
= 1: Therefore, the value

function associated to the second-stage problem is �+j (U(fc0; cjg)). k

Claim 3: The function �i (U) satis�es the Bellman equation (BE1).

Proof: First, notice that the solution to the maximization problem in (A1) is a continuation

value U+j that belongs to the set UPFj = fU : �+j (U) = �j(U)g; i.e. the set of continuation
values U such that the seller could not increase its pro�ts by delivering more than U: There-

fore, I can restrict attention to continuation values in UPFj and replace �+j (U) with �j(U)

in (A1): Secondly, notice that, if the continuation function in (A1) is �j(U) and the choice

of continuation values is not restricted to UPFj , the solution to the maximization problem is

U 0j 2 UPFj : Therefore, I can relax the choice set and obtain (BE1). k

Claim 4: If Pi (U) is a solution to the functional equation (BE1), then Pi (U) is equal to

�i (U) :

Proof: Denote with T the mapping associated to (BE1): It is immediate to verify that T

satis�es the Blackwell�s su¢ cient conditions for a contraction mapping. Therefore, T has a

unique �xed point. k

To conclude the proof of Lemma 1, notice that the value function associated to the

sequence problem (SP1) when c0 = ci and n(c0) > 0 is given by n(c0) ��i(0).
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A.2 Proof of Proposition 1

Consider the �rst-stage problem in (4). For V < Z, the objective function (1� � + � (V )) �
�i(V ) is equal to zero because �(V ) = � � 1: For V = Z; the function is strictly positive

because �(V ) = 0 and, as proved in Lemma 1, �i(Z) > 0. For V � Z, the function is quasi-
concave because it is concave wherever increasing and may be convex only when strictly

decreasing. The function attains its maximum for V = U i; where U i satis�es

[�0(U i) � �i(U i)� (1� � + �(U i))] � (U i � Z) = 0. (A2)

From the properties of the objective function, it follows that the solution Vi(U) to the �rst-

stage problem is U i whenever U � U and U otherwise. In turn, the value function �i(U)

associated to the �rst-stage problem is constant at (1� �+ �(U i)) � �(U i) whenever U � U i
and is strictly decreasing and quasi-concave otherwise.

Next, consider the second-stage problem in (4). As proved in Lemma 1, the choice set can

be restricted to those continuation values that are greater than the pro�t-maximizing values

(U `; Uh). Over this domain, the objective function is quasi-concave and attains is maximum

at (U 0`; U
0
h); where U

0
j satis�es

�0(U 0j) � �j(U 0j)� (1� � + �(U 0j)) = � (1� �) : (A3)

Because �0�j � (1��+ �) is non-negative for all U � U j , the optimal continuation value U 0j
is strictly greater than the pro�t-maximizing value U j .

Finally, I want to compare the solution to the �rst and second stage problem under

high and low cost of production. Denote with T the contraction mapping associated to the

Bellman equation (BE1). Since (TP )h < (TP )` whenever Ph � P`, the unique �xed point
� of the contraction mapping T associated to the Bellman equation (BE1) is such that the

pro�t function is strictly decreasing in the cost of production: In turn, this implies that

�h(U) < �`(U) and, through the �rst order conditions (A2) and (A3), that Uh � U ` and

U 0h < U
0
`:

A.3 Proof of Lemma 2

Claim 1: After any history bct, the optimal price schedule p is such that U (bctjp) � Z.
Proof: Suppose that, at bct1, the optimal schedule p is such that the buyers�lifetime utility
U (bctjp) is strictly smaller than Z and, consequently, the seller�s expected pro�ts are zero.

22



Consider the alternative schedule bp which prescribes the constant price bp(bc� ) = u � z for
all histories bc� that are subsequents of bct1. At bct1, the alternative schedule bp is such that
the buyers�lifetime utility U (bctjbp) is equal to Z and the seller�s expected pro�ts are strictly
positive. The schedule bp satis�es the incentive-compatibility constraint (IC). If it is also
renegotiation-proof, then bp is a feasible Pareto improvement over p after the history bct1 is
realized. Therefore, p violates the constraint (RP) and is not an optimum. If bp is not
renegotiation-proof, then there exists a feasible schedule ~p which is a Pareto improvement

over bp and, a fortiori, over p. Again, p violates the constraint (RP) and is not an optimum.
k

Denote with �i (U) the value function associated to (SP2) when c0 = ci; n(c0) = 1 and

U(c0) is constrained to be greater or equal than U: Denote with �+i (U) the value function

associated to (SP2) when c0 = ci; n(c0) = 1 and U(c0) is constrained to be equal to U:

Finally, let UPF be the set of promised values U such that the seller could not increase its

pro�ts by delivering more than U , i.e. UPFi = fU : �+i (U) = �i(U)g.

Claim 2: The value function �+i (U) satis�es the Bellman equation

�+i (U) = max
pi;U 0

j2UPF
j

(1� � + �(U))
h
p� ci + �

P
j Pr(cj jci)�

+
j (U

0
j)
i
; s.t.

U = u� p+ �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
;

�+j (U
0
j) � ~�+�j(U

0
�j),

(A4)

where

~�+i (U) = (1� � + � (U))
h
p+i (U)� c�i + �

P
j Pr(cj jc�i)�

+
j (U

0+
jji (U))

i
.

Moreover, the value functions �i(U) and �
+
i (U) satisfy the functional equation

�i(U) = max
V;p;U 0

j2UPF
j

(1� � + �(V ))
h
p� ci + �

P
j Pr(cj jci)�

+
j (U

0
j)
i
; s.t.

U � V = u� p+ �
P

j Pr(cj jci)
�
(1� �)U 0j + �Z

�
;

�+j (U
0
j) � ~�+�j(U

0
�j).

(A5)

Proof: The proof of this claim follows directly from the analysis of the seller�s problem in

Section 4.1. k
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Claim 3: The function �i (U) satis�es the Bellman equation (BE2).

Proof: The continuation value U 0j that solves the maximization problem in (A5) belongs to

the set UPFj . For all U 2 UPFj , the pro�t function �+j (U) is equal to �j(U) and the function
~�+j (U) is equal to ~�j(U), where ~�j(U) is de�ned in (BE2). Therefore, I can replace the

continuation pro�t �+j (U) with �j(U) in the objective function of (A5) and substitute the

incentive compatibility constraint �+j (U
0
j) � ~�+�j(U

0
�j) with �j(U

0
j) � ~��j(U

0
�j). Moreover,

if the constraint U 0j 2 UPF is removed from the modi�ed problem, the optimal continuation

value U 0j belongs to U
PF
j : Therefore, I can also substitute the constraint U 0j 2 UPFj with the

constraint Uj � Z. k

To conclude the proof of Lemma 2, notice that the value function associated to the

sequence problem (SP2) when c0 = ci and n(c0) > 0 is given by n(c0) ��i(0).

A.4 Proof of Proposition 2

For ĉt�1 = ct�1 and ct = ch, the �rst-best schedule satis�es the incentive compatibility

constraint (IC) if and only if

(1� �) [1� � (1� � + �(U 0`)) (2�� 1)] + �0 [1� � (1� �) (2�� 1)] (U 0` � U 0h) � 0:

The �rst term on the LHS is positive because � (1� � + � (U)) is strictly smaller than 1.
The second term on the LHS is positive because U 0` is strictly greater than U

0
h. Therefore,

the incentive compatibility constraint is satis�ed.

For ĉt�1 = ct�1 and ct = ch, the �rst-best schedule satis�es the incentive compatibility

constraint (IC) if and only if

�0 [1� � (1� �) (2�� 1)] (U 0` � U 0h)� (1� �) [1� � (1� � + �(U 0h)) (2�� 1)] � 0:

The derivative of the LHS with respect to the persistence � of productivity shocks is given

by

� (1� �) [2(1� � + � (U 0h)) + (2�� 1) �0] + [1� � (1� �) (2�� 1)] �0
d(U 0` � U 0h)

d�
:

If dU 0`=d� > 0 and dU
0
h=d� < 0, the derivative is strictly positive and, hence, there exists a

critical level of persistence �� 2 [1=2; 1] such that the incentive compatibility constraint is
satis�ed when and only when � � ��.

In order to identify the sign of dU 0i=d�, it is convenient to let Pi(U`; Uh; �) denote the

pro�ts of a seller that has realized the production cost ci and has committed to providing its
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customers with the lifetime utility U` whenever ct = c` and with Uh whenever ct = ch, i.e.

Pi(U`; Uh; �) = (1� � + �(Ui)) [pi � ci + ��Pi + �(1� �)P�i]

pi(U`; Uh; �) = u� Ui + ��Z + �(1� �) [�Ui + (1� �)U�i] :

For a generic couple (U`; Uh), Pi is smaller than the value function �i. For (U`; Uh) equal to

the optimal continuation values (U 0`; U
0
h), Pi is equal to �i. The derivative of Pi with respect

to the persistence of productivity shocks is given by

@Pi
@�

= ��1� [(1� �)(Ui � U�i) + (Pi � P�i)] ;

where � is a positive constant. When evaluated at (U 0`; U
0
h), @P`=@� is strictly positive and

@Ph=@� is strictly negative because U 0` > U
0
h and P` = �` > �h = Ph.

The value function �i(V ; �) associated to the second-stage problem in (4) is equal to

�i(V ; �) = u� ci � V + ��Z + � max
U`;Uh

P
j Pr(cj jci) [Pj(U`; Uh; �) + (1� �)Uj ]

and its derivative with respect to the persistence � of productivity shocks is

@�i
@�

= �

�
(1� �)(U 0i � U 0�i) + (Pi � P�i) + �

@Pi
@�

+ (1� �)@P�i
@�

�
=

=
�

1� � + �(U 0i)
@Pi
@�
.

From the second line, it follows that @�`=@� is strictly positive and @�h=@� is strictly negative.

In turn, from the �rst order condition (6) for the continuation value, it follows that dU 0`=d�

is strictly positive and dU 0h=d� is strictly negative.

A.5 Preliminaries to Propositions 3 and 4

Consider the �rst-stage problem in (11). For V < Z, the objective function (1� � + � (V )) �
�i(V ) is equal to zero because �(V ) = � � 1: For V = Z; the function is strictly positive

because 1 + � = �(V ) = 1 � � > 0 and �i(Z) > 0 as proved in Lemma 2. For V � Z, the
function is quasi-concave. The function attains its maximum for V = U i; where U i is the

solution to equation (A2). From the properties of the objective function, it follows that the

solution Vi(U) to the �rst-stage problem is U i whenever U � U i and U otherwise. In turn, the
value function �i(U) associated to the �rst-stage problem is constant at (1��+�(U i))��(U i)
whenever U � U i and is strictly decreasing and quasi-concave otherwise.

Next, consider the second-stage problem in (11). As proved in Lemma 2, the choice set can

be restricted to the continuation values (U 0`; U
0
h) that are greater than the pro�t-maximizing
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values (U `; Uh). Over this domain, the objective function is jointly quasi concave in (U
0
`; U

0
h).

Also, for any given U 0h, the objective function is maximized at U
0�
` , where U

0�
` is the solution

to equation (A3) for j = ` and is strictly greater than U `. For any given U
0
`, the objective

function is maximized at U 0�h , where U
0�
h is the solution to equation (A3) for j = h and is

strictly greater than Uh. The choice of the continuation values is limited by the incentive

compatibility constraint �j(U 0j) � e��j(U 0�j). Since V enters separately from (U 0`; U
0
h) in the

objective function and does not enter the constraints, the solution U 0jji(V ) to the second-stage

problem is independent from V and can be denoted with U 0jji:

A.6 Proof of Proposition 3

When � = 1=2, the second-stage problem in (12) can be reformulated as

�i(V ) = u� ci � V + ��Z +
�

2
max
U 0
j�Uj

P
j

�
�j(U

0
j) + (1� �)U 0j

�
; s.t.

(1� � + �(U 0j)) � �j(U 0j) � (1� � + �(U 0�j)) � �j(U 0�j): (A6)

Since U 0h � Uh, U 0` � U ` � Uh and the function (1� � + �) � �h is strictly decreasing for all
U � Uh, the high-cost seller�s incentive compatibility constraint (A6) is equivalent to U 0` �
U 0h. Since the function (1 � � + �) � �` is strictly increasing for U 2 [Uh; U `] and strictly
decreasing for U � U `, the low-cost seller�s incentive compatibility constraint (A6) is satis�ed
either if U 0h � U 0` or if U

0
h is su¢ ciently lower than U `. Overall, a couple of continuation

values (U 0`; U
0
h) is feasible if either U

0
` = U

0
h � U ` or U 0` 6= U 0h and U 0h � U `; U 0` � U `.

Let c` (�) = c�� and ch (�) = c+� for some c 2 (0; u�z) and � � 0: If the solution to
the second-stage problem is such that U 0` = U

0
h, the seller�s pro�ts per customer are bounded

below by

�Pi (V ;�) = u� ci (�)� V + ��Z +
�

2

P
j [�j (U

0�
` (�);�) + (1� �)U 0�` (�)] .

If the solution to the second-stage problem is such that U 0` 6= U 0h, the seller�s pro�ts per

customer are bounded above by

�Si (V ;�) = u� ci (�)� V + ��Z +
�

2

P
j

�
�j(U

S
j (�);�) + (1� �)USj (�)

�
,

where USh (�) = minfU 0�h (�); U `(�)g and US` (�) = U 0�` (�). Independently from the nature

of the solution to the second-stage problem, the seller�s pro�ts per customer are bounded

above by

�Pi (V ;�) = u� ci (�)� V + ��Z +
�

2

P
j

�
�j(U

0�
j (�);�) + (1� �)U 0�j (�)

�
.
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For � = 0; �Pi (V ;�) is equal to �
�
i (U ;�) because �`(U ;�) = �h(U ;�) and U 0�` (�) =

U 0�h (�). For � = 0; �Si (U ;�) is strictly smaller than to �
�
i (U ;�) because U

S
h (�) = Uh(�)

and Uh(�) < U
0�
h (�). By continuity, I conclude that the solution to the second-stage problem

is such that U 0` = U
0
h for all � 2 (0;��).

A.7 Proof of Proposition 4

In order to characterize the second-best price schedule when productivity shocks are per-

sistent, I start by conjecturing that the solution to the problem (SP2) is such that: (i) the

high-cost seller�s incentive compatibility constraint is moot, i.e. �h(U 0hji) >
~�`(U

0
`ji) for

i = `; h; (ii) the low-cost seller prefers to report its true type rather than lying whenever

U 0` = U
0
h = U , i.e. �`(U) � e�h(U).

If the high-cost seller�s incentive compatibility constraint is moot, the second-stage prob-

lem in (12) can be reformulated as

�i(V ) = u� ci � V + ��Z + max
U 0
j�Uj

P
j Pr(cj jci)

�
�j(U

0
j) + (1� �)U 0j

�
; s.t.

(1� � + � (U 0`)) � �` (U 0`) � (1� � + � (U 0h)) � e�h (U 0h) . (A7)

For all U 0` � U `; the LHS of (A7) is strictly decreasing: For all U 0h � Uh; the RHS of (A7)
is quasi-concave because it is concave whenever increasing and convex only when strictly

decreasing. The RHS attains its maximum for U 0h = eUh � U `, where eUh satis�esh
�0(eUh) � e�h(eUh)� (1� � + �(eUh))i � (eUh � Z) = 0:

It is useful to partition the feasible set of the second-stage problem into the subsets P
and S. Speci�cally, P is the set of continuation values (U 0`; U

0
h) that are feasible and such

that U 0h � eUh, while S is the set of continuation values that are feasible and such that

U 0h � eUh. The set P contains the state-independent continuation values U 0` = U 0h � U `

because �`(U 0) � e�h(U 0). The set S does not contain any continuation values (U 0`; U 0h) such
that U 0h is greater than U ` because eUh � U `.
Let c` (�) = c�� and ch (�) = c+� for some c 2 (0; u� z) and � � 0: If the solution

to the second-stage problem belongs to the subset P, the seller�s pro�ts per customer are
bounded below by

�Pi (V ;�) = u� ci (�)� V + ��Z + �
P

j Pr (cj jci) [�j (U
0�
` (�);�) + (1� �)U 0�` (�)] .

If the solution to the second-stage problem belongs to the subset S, the seller�s pro�ts per
customer are bounded above by

�Si (V ;�) = u� ci (�)� V + ��Z + �
P

j Pr (cj jci)
�
�j(U

S
j (�);�) + (1� �)USj (�)

�
,

27



where USh (�) = minfU 0�h (�); U `(�)g and US` (�) = U 0�` (�). Independently from the nature

of the solution to the second-stage problem, the seller�s pro�ts per customer are bounded

above by

�Pi (V ;�) = u� ci (�)� V + ��Z + �
P

j Pr (cj jci)
�
�j(U

0�
j (�);�) + (1� �)U 0�j (�)

�
.

For � = 0; �Pi (V ;�) is equal to �
�
i (U ;�) because �`(U ;�) = �h(U ;�) and U 0�` (�) =

U 0�h (�). For � = 0; �Si (U ;�) is strictly smaller than to �
�
i (U ;�) because U

S
h (�) = Uh(�)

and Uh(�) < U
0�
h (�). By continuity, I conclude that the solution to the second-stage problem

belongs to P for all � 2 (0;�1).

When � is su¢ ciently small, i.e. � 2 (0;�2), the unconstrained maximum of the second-
stage problem (U 0�` ; U

0�
h ) is not feasible because it violates the low-cost seller�s incentive

compatibility constraint (cf. condition (10)). When this is the case, the constraint (A7) holds

with equality because the objective function of the second-stage problem is quasi concave.

Therefore, for all � 2 (0;��), where �� = minf�1;�2g, the solution to the second-stage
problem belongs to the subset P and satis�es the constraint (A7) with equality.

For all � 2 (0;��), the solution (U 0`ji; U 0hji) to the second-stage problem has the following
properties:

1. The continuation value U 0`ji is smaller than U
0�
` . Proof: If U

0
`ji is strictly greater than

U 0�` , then (U
0�
` ; U

0
hji) is feasible because �`(U

0�
` ) > �`(U

0
`ji). Also, (U

0�
` ; U

0
hji) is prefer-

able because the objective function is quasi concave in U 0` and is maximized at U
0�
` .

2. The continuation value U 0hji is greater than U
0�
h . Proof: If U 0hji is strictly smaller

than U 0�h , then (U
0
`ji; U

0�
h ) is feasible because ~�h(U

0�
h ) <

~�h(U
0
hji). Also, (U

0
`ji; U

0�
h ) is

preferable because the objective function is quasi concave in U 0h and is maximized at

U 0�h .

3. The continuation value U 0hji is strictly smaller than U
0
`ji. Proof: If U

0
hji is greater than

U 0`ji, then �`(U
0
`ji) � ~�h(U

0
`ji) >

~�h(U
0
hji). This is not possible because (A7) holds

with equality for all � 2 (0;��).

4. If U 0hjj > U
0
hji; then U

0
`jj is strictly greater than U

0
`ji. Proof: Since the LHS and RHS of

(A7) are strictly decreasing in U 0` and U
0
h and the constraint (A7) holds with equality,

if U 0hjj > U
0
hji then U

0
`jj > U

0
`ji.

5. The continuation values are such that U 0`j` � U 0`jh and U
0
hj` � U 0hjh. Proof: Since

the objective function puts more weight on �`(U 0`) + (1� �)U 0` and less weight on
�h(U

0
h) + (1� �)U 0h when ci = c` than when ci = ch, �`(U 0`j`) + (1� �)U 0`j` is greater

than �`(U 0`jh) + (1� �)U 0`jh. In light of property (1), this implies that U 0`j` is greater
than U 0`jh. In light of property (2), this implies that U

0
hj` is greater than U

0
hjh.
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6. The continuation values are such that E
h
(1� �)U 0jji +�i(U 0jji)jck

i
is greater for k = i

than �i. Proof: This result follows immediately from property (5).

These six properties of the optimal continuation values lead immediately to Proposition 4.

In the last step of the analysis, I have to verify my initial conjectures. In order to

verify that the high-cost seller�s incentive compatibility constraint is moot, it is convenient

to rewrite �h(U 0hji) � ~�`(U
0
`ji) as

�0(U 0hji � U 0`ji) � �h(U 0hji) �

(1� � + �(U 0`ji))

2664
U 0hji � U 0`ji + � (1� �) (2�� 1) (U 0`j` � U 0hj`)+

�
n
E
h
(1� �)U 0ij` +�i(U 0ij`)jch

i
� E

h
(1� �)U 0ijh +�i(U 0ijh)jch

io
.

3775
(A8)

First, notice that U 0hji � U 0�h implies that �0�h(U 0hji) is smaller than �(U
0
hji) and that the

LHS of (A8) is bounded below by

(U 0hji � U 0`ji) � �(U 0hji). (A9)

Secondly, notice that E
h
(1� �)U 0ijh +�i(U 0ijh)jch

i
greater than E

h
(1� �)U 0ij` +�i(U 0ij`)jch

i
and U 0`jh�U 0hjh greater than U 0`j`�U 0hj` (a fact that can be derived from the low-cost seller�s

incentive compatibility constraint) imply that the RHS of (A8) is bounded above by both

(1� � + �(U 0`ji))
h
U 0hji � U 0`ji + � (1� �) (2�� 1) (U 0`j` � U 0hj`)

i
;

(1� � + �(U 0`ji))
h
U 0hji � U 0`ji + � (1� �) (2�� 1) (U 0`jh � U 0hjh)

i
.

(A10)

Overall, the high-cost seller�s incentive constraint (A8) is satis�ed if (A9) is greater than

(A10) or, equivalently, if

(1� �)
h
1� �(1� � + �(U 0hji))(2�� 1)

i
+ �0 [1� �(1� �)(2�� 1)] (U 0`ji�U 0hji) � 0: (A11)

Because �(1 � � + �(U 0hji)) is smaller than 1 and U 0`ji is greater than U 0hji, the su¢ cient
condition (A11) is satis�ed.

Finally, I have to verify the conjecture that the low-cost seller prefers to report its true

type rather than lying whenever U 0` = U
0
h = U , i.e. �`(U) � ~�h(U) or

E
h
�j(U

0
jj`) + (1� �)U 0jj`jc`

i
�

E
h
�j(U

0
jjh) + (1� �)U 0jjhjc`

i
+ (2�� 1) (1� �) (U 0hjh � U 0`jh).

(A12)
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Since E
h
�j(U

0
jj`) + (1� �)U 0jj`jc`

i
is greater than E

h
�j(U

0
jjh) + (1� �)U 0jjhjc`

i
and U 0hjh

is smaller than U 0`jh, condition (A12) is satis�ed.

30


